
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

UML Activity Diagrams and Maude Integrated

Modeling and Analysis Approach Using Graph

Transformation

Elhillali Kerkouche, Khaled Khalfaoui

Dept. Computer Science, University of Jijel,

MISC Laboratory, University Constantine 2,

Algeria

{elhillalik, Kh-khalfaoui}@yahoo.fr

Allaoua Chaoui

Dept. Computer Science and its Applications,

MISC Laboratory,

University Constantine 2,

Algeria

chaoui@misc-umc.org

Ali Aldahoud

Al-Zaytoonah University of Jordan,

 P.O. Box 130, Amman 11733,

 Jordan

aldahoud@zuj.edu.jo

Abstract—The use of UML Activity Diagrams for modeling global dynamic behaviors of systems is very widespread. UML diagrams

support developers by means of visual conceptual illustrations. However, the lack of firm semantics for the UML modeling notations

makes the detection of behavioral inconsistencies difficult in the initial phases of development. The use of formal methods makes such

error detection possible but the learning cost is high. Integrating UML with formal notation is a promising approach that makes UML

more precise and allows rigorous analysis. In this paper, we present an approach that integrates UML Activity Diagrams with

Rewriting Logic language Maude in order to benefit from the strengths of both approaches. The result is an automated approach and a

tool environment that transforms global dynamic behaviors of systems expressed using UML models into their equivalent Maude

specifications for analysis purposes. The approach is based on Graph Transformation and the Meta-Modeling tool AToM3 is used. The

approach is illustrated through an example.

Keywords— UML Activity Diagrams; Rewriting Logic;Maude language; Meta-Modeling; Graph Grammars; Graph Transformation;

AToM3.

I. INTRODUCTION

The Unified Modeling Language (UML) [1] has become a
widely accepted standard in the software development industry.
Some diagrams are used to model the structure of a system
while others are used to model the behavior of a system. UML
Statecharts, UML collaboration diagrams, UML Sequence
Dsiagrams and UML Activity diagrams are used to model the
dynamic behavior in UML. UML State chart diagrams model
the lifetime (states life cycle) of an object in response to events.
A UML Collaboration diagram models the interaction between
a set of objects through the messages (or events) that may be
dispatched among them. UML Sequence Diagrams describe an
interaction by focusing on the sequence of messages (or
events) that are exchanged, along with their corresponding

occurrence specifications on the lifelines. UML Activity
diagram model the global dynamic behavior of systems in term
of control flow or object flow with emphasis on the sequence
and conditions of the flow. UML Activity diagrams are widely
used to model workflow systems, service oriented systems and
business processes. Control flow includes support for
sequential, choice, parallel and events. Activities may be
grouped in sub-activities and can be nested at different levels.
However, the UML is a semiformal language which lacks
rigorously defined constructs.

Rewriting logic has sound and complete semantics [2] and
it is considered as one of very powerful logics in description
and verification of concurrent systems. Also, the rewriting
logic language Maude [3] is considered as one of very

Page | 515

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

2

powerful languages based on Rewriting logic. However,
Maude system offers textual way to the user to create and deal
with systems. Execution under Maude system is done by using
command prompt style. In this case, the user looses the
graphical notations which are important for the clarity,
simplicity and readability of a system description.

In this context, UML and Maude language have
complementary features: UML can be used for modeling while
Maude can be used for verification and analysis. Thus,
developing a tool support for modeling and analysis of
complex concurrent systems is significant to modelers who use
UML to model their systems. UML behavioral models are
projected automatically into Maude specifications for analysis
and verification to detect behavioral inconsistencies like
deadlock, imperfect termination, etc. Then, the results of the
formal analysis can be back-annotated to the UML models to
hide the mathematics from modelers.

In this paper, we propose a modeling tool and Graph
Transformation approach for modeling and verification of
global dynamic behavior in UML models using Maude
language. Building a modeling tool from the scratch is a
prohibitive task. Meta-Modeling approach is useful to deal
with this problem, as it allows the modeling of the formalisms
themselves [4]. A model of formalism should contain enough
information to permit the automatic generation of tool to check
and build models subject to the described formalism’s syntax.
In order to get a more general transformation approach
between UML and Maude, we research the transformation at
the Meta-Model level. And for reaching an automatic and
correct process, we use Graph Transformation Grammars and
Systems to define and implement the transformation. Using our
approach, the modelers specify the global dynamics of a
system by means of UML Activity diagrams. Then, the
modelers transform automatically their behavioral specification
into its equivalent Maude specification. From the obtained
formal specification, they can use Maude Model Checker to
verify their models.

With this end, we have defined a simplified Meta-Model
for UML Activity diagrams using AToM3 tool [5]. Then, we
have used this Meta-Modeling tool to automatically generate a
visual modeling tool for UML Activity diagrams according to
its proposed meta-model. For the transformation process, we
have defined a graph grammar to translate the UML Activity
diagrams created in the generated tool to a Maude
specification. Then the rewriting logic language Maude is used
to perform the verification of the resulted Maude specification.

The rest of this paper is organized as follows. Section 2
outlines the major related work. In section 3, we review the
main concepts of UML Activity diagrams, Rewriting logic,
Maude language and graph transformation. In section 4, we
describe our approach that transforms a UML Activity
diagrams to Maude specification. In section 5, we illustrate our
approach using an example. The final section concludes the
paper and gives some perspectives.

II. RELATED WORKS

In the literature, several research works has been done
about the integration of different UML diagrams and formal
methods such as Petri nets [6] [7] [8], Colored Petri nets (CPN)
[9], Object-Z [10], B method [11], LOTOS, Communicating
Sequential Processes (CSP) [12] and Maude [13].

For the formalization of UML Activity Diagrams, the most
important approaches use CSP or CPN formalisms. In [14], the
authors present a case study of UML Activity Diagram to CSP
transformation using graph transformation. In [15], the authors
describe how an UML activity diagram can be transformed into
a corresponding CSP expression by using the graph rewriting
language PROGRES. In [16], the author explains how activity
semantics are translated into colored Petri net semantics.

On the other hand, the rewriting logic language Maude
offers the advantage of its sound and complete semantics [2]
and it is considered as one of very powerful languages in
specification, programming and verification of non-
deterministic concurrent systems. In this paper, UML Activity
Diagram semantics are defined in terms of rewriting logic.

Rewriting logic gives to UML Activity Diagram a simple, more
intuitive and practical textual version to analyze, without losing
formal semantic (mathematical rigor, formal reasoning).

III. BACKGROUND

A. UML Activity Diagrams

UML Activity Diagram is one of the important UML
models. It is utilized to describe an operation step by step in a
system. Moreover, it models the overall control flow between
activities and its relationships among several objects with a lot
of parallel process. It supports the following concepts: choice,
iteration and concurrency. Its structure is a connected graph in
which the nodes are represented by icons and the edges by
connections. An Activity Diagram includes the following
constructs: Initial Node, Flow Final node, Activity Final node,
Decision Node, Merge Node, Fork Node Join Node and
transition. Only the last construct is represented by a
connection; the others are represented by icons. These
constructs are shown in Figure 1.

Fig. 1. UML Activity Diagram constructs.

B. Rewriting Logic & Maude Language

In Rewriting Logic, each concurrent system can be
specified by a rewriting theory. A rewrite theory is defined as a
4-tuple (Σ, E, L, R), where the signature (Σ, E) is an equational
theory, L is a set of labels and R is a set of possibly conditional
labeled rewrite rules that are applied modulo the equations E.

Initial Node

Action Object

Flow Final Activity Final Decision Node

 &

Merge Node

Fork Node

 &

Join Node

Transition
Pin

Page | 516

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

3

An important consequence of the RL definition is that the
rewrite theory can be viewed as an executable specification of
the concurrent system that it formalizes. The state is
represented by an algebraic term, the transition becomes a
rewriting rule and the distributed structure is expressed as an
algebraic structure. For more information on the subject see
[17].

Maude is a specification and programming language based on

Rewriting Logic [18]. It integrates an equational style of

functional programming with Rewriting Logic computation.

Maude’s implementation has been designed with the explicit

goals of supporting executable specification and formal

methods applications. Three types of modules are defined in

Maude specification: The functional modules, the system

modules and the object oriented modules. In this work, we

will use only functional and system modules

Functional Modules: Functional modules define data types

and operations on them by means of equational theories. In

other words, Functional modules can be seen as an equational-

style functional program with user definable syntax in which a

number of sorts, their elements, and functions on those sorts

are defined.

System Module: The system module defines the dynamic

behavior of a system. It augments the functional modules by

the introduction of rewriting rules. A rewriting rule specifies a

local concurrent transition which can proceed in a system. The

execution of such transition, specified by the rule, can take

place when the left part of a rule matches to a portion of the

global state of the system and the condition of the rule is valid.

This type of module augments the functional modules by the

introduction of rewriting rules.

In addition, Maude integrates a model checker. Model-

checking is an automatic method for deciding if a specification

satisfies a set of properties (for more details, see [19]).

C. AToM3 & Graph Grammar

AToM3 [5] is a visual tool for Multi-formalism Modeling
and Meta-Modeling. By means of Meta-Modeling, we can
describe or model the different kinds of formalisms needed in
the specification and design of systems. Based on these
descriptions, AToM3 can automatically generate tools to
manipulate (create and edit) models in the formalisms of
interest [20].

AToM3’s capabilities are not restricted to these
manipulations. AToM3 also supports graph rewriting system,
which uses Graph Grammar to visually guide the procedure of
model transformation. Graph Grammar [21] is a generalization
of Chomsky grammar for graphs. It is a formalism in which the
transformation of graph structures can be modeled and studied.
The main idea of graph transformation is the rule-based
modification of graphs as shown in Fig.1.

Fig. 2. Rule-based Modification of Graphs.

Graph Grammars are composed of production rules, each
having graphs in their left and right hand sides (LHS and
RHS). Rules are compared with an input graph called host
graph. If a matching is found between the LHS of a rule and a
subgraph in the host graph, then the rule can be applied and the
matching subgraph of the host graph is replaced by the RHS of
the rule. Furthermore, rules may also have a condition that
must be satisfied in order for the rule to be applied, as well as
actions to be performed when the rule is executed. A graph
rewriting system iteratively applies matching rules in the
grammar to the host graph, until no more rules are applicable.

IV. OUR APPROACH

The proposed approach consists of transforming a UML
Activity diagram to Maude specification. To reach this
objective, we have proposed a meta-model for UML activity
diagram and a graph grammar that performs automatically the
transformation of a UML Activity diagram. In this work, we
focus on control flow which addresses the control part of UML
Activity diagram, and we leave the object flow for future
works. In the following, we describe in details our approach.

A. Meta-modeling

To Meta-model Activity diagrams, we proposed the
simplified meta-model containing thirteen classes linked by
seven associations and twelve inheritances as shown in Figure
3. Each association of this meta-model links an instance of the
source class with a single instance of the destination Class.
Some classes are described as follows:

ActionNode Class: represents the Action constructs of the
diagram. Graphically it is represented by a rectangle with
rounded corners. An Action node has Name attribute, and it
can be connected with all control nodes, others Action nodes,
Object nodes or Pin nodes.

InitialNode Class: represents the beginning of an activity
diagram. Graphically it is represented by a small solid circle. It
has a constraint which prohibits the existence of incoming
Arcs.

To fully define our meta-models, we have also specified the
graphical appearance of each entity of the formalisms
according to its appropriate graphical notation (shown in
Figure 1). Given our meta-model, we have used AToM3 to
generate a palate of buttons allowing the user to create the
constructs defined in meta-model (see Figure 5).

RHS LHS

Host Graph

LHS

RHS

Host Graph

Apply R1

Transformation Rule R1

::

Page | 517

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

4

Fig. 3. Simplificed UML Activity Diagram Meta-Model

B. Representation of UML Activity Diagram in Maude

In this section, we will explain how to express a UML
Activity Diagram in Maude language by using two Modules.
We define first a Basic_ActivityDiagram functional module
that describes basic operations of Activity Diagram. This
module is described as follows:

fmod Basic_ActivityDiagram is

sort CONFIGURATION .

sorts InitialNode ActivityFinal FlowFinal Action .

subsorts InitialNode ActivityFinal FlowFinal Action < CONFIGURATION .

op null : -> CONFIGURATION .

op _ _ : CONFIGURATION CONFIGURATION -> CONFIGURATION [assoc comm

id:null] .

op Isin : ActivityFinal CONFIGURATION -> Bool .

vars E E’ : ActivityFinal .

vars S conf : CONFIGURATION .

eq Isin (E, Null) = false .

eq Isin (E, E’ S) = E==E’ or Isin (E, S) .

endfm

It contains the declaration of new type called
CONFIGURATION which represents the current configuration
of an Activity diagram instance. The configuration of an
Activity diagram consists of Initial Node, Activity Final, Flow
Final and/or Actions which are declared as subsorts of
CONFIGURATION. In addition, this module defines
operations used for manipulating configuration elements, as
well as equations implementing these operations. For example,
The Isin operation returns a Boolean value which indicates if
Activity Final sub-configuration is in a configuration.

TABLE I. REPRENTATION OF CONTROL STRUCTURES IN MAUDE

Activity Diagram Control

Structures

Corresponding Maude Rewriting

Rules
Initial to Action

rl [Initial]: Initial => Act1

Action to Action

rl [Transition]: Act1 => Act2

Action to Final Flow

rl [FinalFlow]: Act1 => FinalFlow

Action to Final Activity

rl [FinalAction]: Act1 => FinalActivity

Merge Node

rl [Merge]: Act1 => Act4

rl [Merge]: Act2 => Act4

rl [Merge]: Act3 => Act4

Join Node

rl [Joint]: Act1 Act2 Act3 => Act4

Decision Node

rl [DecisionC1]: Act1 => Act2

rl [DecisionC2]: Act1 => Act3
rl [DecisionC3]: Act1 => Act4

Fork Node

rl [Fork]: Act1 => Act2 Act3 Act4

The second module is ActivityDiagram system module that
describes transitions firing and control nodes with their
conditions (if any) by rewriting rules as shown in Table I.

We note that all rewriting rules (except Initial rewriting
rule) are enabled when the Activity Final is not in the current
configuration of Activity diagram.

C. Automatic Translation (Graph Grammar)

To generate automatically Maude specification from a
UML Activity diagram, we have proposed a Graph Grammar
(GG) to traverse the Activity diagram and generate the
corresponding code in Maude. The advantage of using a graph
grammar to generate the textual code is the graphical and high-
level fashion.

The graph grammar has an initial Action which opens the
file where the code will be generated and decorates all the
elements in the model with temporary attributes to be used in
the conditions specified in the GG rules. For each element, we
use two attributes: Current and Visited. The Current attribute is
used to identify the element in the model whose code has to be
generated, whereas the Visited attribute is used to indicate

Page | 518

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

5

whether code for the element has been generated yet. In our
GG, we have proposed sixteen rules which will be applied in
ascending order by the rewriting system until no more rules are
applicable. We are concerned here by code generation, so none
of these GG rules will change the Activity diagram models. For
lack of space, we only describe the following rules (see Figure
4):

Rule1: Gen_Rule_InitialNode2Action (priority 1): is applied
to locate the initial node which is related to an Action node,
and generate the corresponding Maude specification.

Rule5: Gen_LeftPartOfForkNodeRule (priority 3): is applied
to locate a Fork node which is related to current Action node
with an incoming transition, and generate the left part of the
corresponding rewriting rule in Maude.

Fig. 4. Graph Grammar to generate Maude specification from an Activity

Diagram

Rule6: Gen_RightPartOfForkNodeRule (priority 3): is
applied to locate an Action node related to the current Fork
node with an incoming transition, and generate its name in the
right part of the corresponding rewriting rule in Maude.

Rule7: EndOfForkNodeTranslation (priority 6): is applied to
locate the current Fork node whose processing has been
terminated, and mark it as Visited. In addition, it generates the
condition of the rewriting rule.

The graph grammar has also a final action which erases the
temporary attributes from the entities and closes the output file.

V. CASE STUDY

To evaluate the practical usefulness of the proposed
approach, we consider a simple example of order processing
application. In this diagram, the first action is to receive
requested order. After order is accepted and all required
information is filled in, payment is accepted and order is
shipped. We Note that this example allowing order shipment
before invoice is sent or payment is confirmed. The Figure 5
presents the UML Activity diagram of the Process Order
created in our tool.

To analyze this behavioral specification of the order
processing application, we have to transform this specification
into its equivalent Maude specification. To realize this
transformation in our tool, we have to execute the proposed
Graph Grammar. The resulted Maude specification of the
automatic transformation is shown in Figure 6.

In order to perform the analysis by simulation of the
resulted Maude specification, we have invoked the rewriting
logic Maude system. Simulation consists of transforming the
initial state to another by doing one or many rewriting actions.
Therefore, in addition to generated file, the user may give to
the Simulator the number of rewriting steps if (he/she) wants to
check intermediary states. If this number is not given, the
Simulator continues the simulation operation until reaching a
final state. The Result configuration (final state) of the
simulation is given in the same manner as configuration. In our
example (see Figure 7), we have asked the application to
perform the simulation from the initial node.

LHS

1.- Gen_Rule_InitialNode2Action:

 RHS

::

CONDITION

 (Node (3). Current = = 0) And (Node (3). Visited = = 0)

ACTION

 Node (3). Current = 1; Node (3). Visited = 0;

 WriteInFile ('rl [IntAct]: Initial => ' + Node (3).Name);

<ANY> <COPIED>

LHS

5.- Gen_LeftPartOfForkNodeRule:

 RHS

::

CONDITION

 (Node (1). Current = = 1) And (Node (1). Visited = = 0)

 (Node (3). Current = = 0) And (Node (3). Visited = = 0)

ACTION

 Node (1). Current = 0; Node (1). Visited = 1;

 Node (3). Current = 1; Node (3). Visited = 0;

 WriteInFile ('crl [ForAct]: ' + Node (1).Name + '=> ');

<ANY> <COPIED>

LHS

6.- Gen_ RightPartOfForkNodeRule:

 RHS

::

CONDITION

 (Node (1). Current = = 1) And (Node (1). Visited = = 0)

 (Node (3). Current = = 0) And (Node (3). Visited = = 0)

ACTION

 Node (1). Current = 1; Node (1). Visited = 0;

 Node (3). Current = 1; Node (3). Visited = 0;

 WriteInFile (Node (3).Name);

<ANY> <COPIED>

LHS

7.- Gen EndOfForkNodeTranslation :

 RHS

::

CONDITION

 (Node (1). Current = = 1) And (Node (1). Visited = = 0)

ACTION

 Node (1). Current = 0 ; Node (1). Visited = = 1;

 WriteInFile (' if (not Isin (Final_Action, conf)));

Page | 519

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

6

Fig. 5. UML Activity diagram created in our tool

Fig. 6. Generated Maude specification

Fig. 7. Execution of order processing example under Maude system.

VI. CONCLUSION

In this paper, we have presented a formal framework and an
environment tools based on the combined use of Meta-
Modeling and Graph Grammars for the Modeling and analysis
of global dynamic behavior in UML models using Maude
language. With Meta-modeling, we have defined the syntactic
aspect of UML Activity Diagrams, and then we have used the
meta-modeling tool AToM3 to generate its visual modeling
environment. By means of Graph Grammar, we have extended
the capabilities of our framework to transform UML Activity
Diagrams into an equivalent Maude specification. The resulted
specification can be used to verify system properties using
Maude model checking.

In a future work, we plan to transform composite action nodes

and complexes links in Maude specification. We plan also to

perform some verification of properties using Maude model

checking.

REFERENCES

[1] G. Booch, I. Rumbaugh and J.Jacobson, “The Unified Modeling
Language User Guide”, in Addison-Wesley, 1999.

[2] J. Meseguer, “Rewriting Logic as a Semantic Framework of
Concurrency: a Progress Report”, in Springer-Verlag, Lecture Notes in
Computer Science, 119, 1996, pp. 331-372.

[3] J. Meseguer, “Rewriting logic and Maude: a Wide-Spectrum Semantic
Framework for Object-based Distributed Systems”, In S. Smith and C.L.
Talcott, editors, Formal Methods for Open Object-based Distributed
Systems, (FMOODS’2000), 2000, pp. 89-117,.

[4] J. De Lara and H. Vangheluwe, “Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3”, in Software and Systems
Modelling, Special Section on Graph Transformations and Visual
Modeling Techniques, Vol. 3, 2004, pp. 194–209.

[5] AToM3 Home page, http://atom3.cs.mcgill.ca/

[6] J.A. Saldhana, M. Shatz and Z. Hu, “Formalisation of Object Behavior
and Interaction From UML Models”, in International Journal of
Software Engineering and Knowledge Engineering. Vol. 11, #6, 2001,
pp. 643-673.

[7] H. Xinhong, C. Lining, M. Weigang, G. Jinli and X. Guo, “Automatic
transformation from UML statechart to Petri nets for safety analysis and
verification”, Quality, Reliability, Risk, Maintenance, and Safety
Engineering (ICQR2MSE), in International Conference on, Conference
Publications, Print ISBN: 978-1-4577-1229-6, 2011, pp. 948 - 951.

[8] M. Wang; L. Lu, “A transformation method from UML statechartto Petri
nets", in Computer Science and Automation Engineering (CSAE), 2012
IEEE International Conference on, On page(s): 89 - 92 Vol.2, May 2012,
pp.25-27.

Page | 520

http://atom3.cs.mcgill.ca/

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0093 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

7

[9] E. Kerkouche, A. Chaoui, E. Bourennane, O. Labbani, “A UML and
Colored Petri Nets Integrated Modeling and Analysis Approach using
Graph Transformation”, In Journal of Object Technology, vol. 9, no. 4,
2010, pp 25–43.

[10] J. Araujo and A. Moreira. “Specifying the Behavior of UML
Collaborations Using Object-Z”. in Departamento de Infomatica,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Portugal, 2000.

[11] H. Ledang and J. Souquières, “Formalizing UML Behavioral Diagrams
with B. Tenth OOPSLA Workshop on Behavioral Semantics: Back to
Basics”, in Tampa Bay, Florida, USA, 2001.

[12] C.A.R. Hoare, “Communicating Sequential Processes”. In Prentice Hall
International Series in Computer Science.Prentice Hall, April 1985.

[13] P. Gagnon, F. Mokhati, M. Badri: “Applying Model Checking to
Concurrent UML Models”, in Journal of Object Technology, Vol. 7, no.
1, January- February 2008, pp. 59-84,
http://www.jot.fm/issues/issue_2008_01/article1/

[14] D. Bisztray, K. Ehrig, and Reiko Heckel, “Case Study: UML to CSP
Transformation”. Available at http://www.informatik.uni-
marburg.de/~swt/agtivecontest/UML-to-CSP.pdf

[15] E. Weinell and U. Ranger, “Using PROGRES for Transforming UML
Activity Diagrams into CSP Expressions”. Available at
www.se.rwthaachende/files/agtivetc/UML_to_CSP.pdf.

[16] H. Störrle, “Structured Nodes in UML 2.0 Activities”, in Nordic Journal
of Computing, Vol. 11, No. 3, Sep 2004, pp. 279-302.

[17] J. Meseguer, “Conditional rewriting logic as a unified model of
concurrency”, in Theoretical Computer Science, Vol. 96(1), 1992, pp.
73-155.

[18] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer
and C.Talcott, ”Maude manual (version 2.2)”, Internal Report, SRI
International, December 2007.

[19] S. Eker, J. Meseguer and A. Sridharanarayanan, “The Maude LTL
model checker”, in Proceedings of the 4th International Workshop on
Rewriting Logic and Its Applications (WRLA), Electronic Notes in
Theoretical Computer Science, Vol. 71, 2002.

[20] J. De Lara and H. Vangheluwe, “Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3”, in Software and Systems
Modelling, Special Section on Graph Transformations and Visual
Modeling Techniques, Vol. 3, 2004, pp. 194–209.

[21] R. Bardohl, H. Ehrig, J. De Lara and G. Taentzer, “Integrating Meta
Modelling with Graph Transformation for Efficient Visual Language
Definition and Model Manipulation“, in Wermelinger, M., Margaria-
Steffen, T. (eds.) FASE 2004. LNCS Springer, Heidelberg, Vol. 2984,
2004, pp. 214–228.

Page | 521

http://www.jot.fm/issues/issue_2008_01/article1/
http://www.informatik.uni-marburg.de/~swt/agtivecontest/
http://www.informatik.uni-marburg.de/~swt/agtivecontest/
http://www.se.rwthaachen/

	Modeling
	CR-ICIT15165
	CR-ICIT15192
	CR-ICIT15212
	CR-ICIT15217
	CR-ICIT15303
	CR-ICIT15329
	CR-ICIT15414
	CR-ICIT15442
	CR-ICIT15461
	CR-ICIT15482
	CR-ICIT15507
	CR-ICIT15508
	CR-ICIT15570

