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Abstract—The use of UML Activity Diagrams for modeling global dynamic behaviors of systems is very widespread. UML diagrams 

support developers by means of visual conceptual illustrations. However, the lack of firm semantics for the UML modeling notations 

makes the detection of behavioral inconsistencies difficult in the initial phases of development. The use of formal methods makes such 

error detection possible but the learning cost is high. Integrating UML with formal notation is a promising approach that makes UML 

more precise and allows rigorous analysis. In this paper, we present an approach that integrates UML Activity Diagrams with 

Rewriting Logic language Maude in order to benefit from the strengths of both approaches. The result is an automated approach and a 

tool environment that transforms global dynamic behaviors of systems expressed using UML models into their equivalent Maude 

specifications for analysis purposes. The approach is based on Graph Transformation and the Meta-Modeling tool AToM3 is used. The 

approach is illustrated through an example. 

Keywords— UML Activity Diagrams; Rewriting Logic;Maude language; Meta-Modeling; Graph Grammars; Graph Transformation; 

AToM3.

I. INTRODUCTION  

The Unified Modeling Language (UML) [1] has become a 
widely accepted standard in the software development industry. 
Some diagrams are used to model the structure of a system 
while others are used to model the behavior of a system. UML 
Statecharts, UML collaboration diagrams, UML Sequence 
Dsiagrams and UML Activity diagrams are used to model the 
dynamic behavior in UML. UML State chart diagrams model 
the lifetime (states life cycle) of an object in response to events. 
A UML Collaboration diagram models the interaction between 
a set of objects through the messages (or events) that may be 
dispatched among them. UML Sequence Diagrams describe an 
interaction by focusing on the sequence of messages (or 
events) that are exchanged, along with their corresponding 

occurrence specifications on the lifelines. UML Activity 
diagram model the global dynamic behavior of systems in term 
of control flow or object flow with emphasis on the sequence 
and conditions of the flow. UML Activity diagrams are widely 
used to model workflow systems, service oriented systems and 
business processes. Control flow includes support for 
sequential, choice, parallel and events. Activities may be 
grouped in sub-activities and can be nested at different levels. 
However, the UML is a semiformal language which lacks 
rigorously defined constructs. 

Rewriting logic has sound and complete semantics [2] and 
it is considered as one of very powerful logics in description 
and verification of concurrent systems. Also, the rewriting 
logic language Maude [3] is considered as one of very 
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powerful languages based on Rewriting logic. However, 
Maude system offers textual way to the user to create and deal 
with systems. Execution under Maude system is done by using 
command prompt style. In this case, the user looses the 
graphical notations which are important for the clarity, 
simplicity and readability of a system description. 

In this context, UML and Maude language have 
complementary features: UML can be used for modeling while 
Maude can be used for verification and analysis. Thus, 
developing a tool support for modeling and analysis of 
complex concurrent systems is significant to modelers who use 
UML to model their systems. UML behavioral models are 
projected automatically into Maude specifications for analysis 
and verification to detect behavioral inconsistencies like 
deadlock, imperfect termination, etc. Then, the results of the 
formal analysis can be back-annotated to the UML models to 
hide the mathematics from modelers. 

In this paper, we propose a modeling tool and Graph 
Transformation approach for modeling and verification of 
global dynamic behavior in UML models using Maude 
language. Building a modeling tool from the scratch is a 
prohibitive task. Meta-Modeling approach is useful to deal 
with this problem, as it allows the modeling of the formalisms 
themselves [4]. A model of formalism should contain enough 
information to permit the automatic generation of tool to check 
and build models subject to the described formalism’s syntax. 
In order to get a more general transformation approach 
between UML and Maude, we research the transformation at 
the Meta-Model level. And for reaching an automatic and 
correct process, we use Graph Transformation Grammars and 
Systems to define and implement the transformation. Using our 
approach, the modelers specify the global dynamics of a 
system by means of UML Activity diagrams. Then, the 
modelers transform automatically their behavioral specification 
into its equivalent Maude specification. From the obtained 
formal specification, they can use Maude Model Checker to 
verify their models. 

With this end, we have defined a simplified Meta-Model 
for UML Activity diagrams using AToM3 tool [5]. Then, we 
have used this Meta-Modeling tool to automatically generate a 
visual modeling tool for UML Activity diagrams according to 
its proposed meta-model. For the transformation process, we 
have defined a graph grammar to translate the UML Activity 
diagrams created in the generated tool to a Maude 
specification. Then the rewriting logic language Maude is used 
to perform the verification of the resulted Maude specification. 

The rest of this paper is organized as follows. Section 2 
outlines the major related work. In section 3, we review the 
main concepts of UML Activity diagrams, Rewriting logic, 
Maude language and graph transformation. In section 4, we 
describe our approach that transforms a UML Activity 
diagrams to Maude specification. In section 5, we illustrate our 
approach using an example. The final section concludes the 
paper and gives some perspectives. 

II. RELATED WORKS  

In the literature, several research works has been done 
about the integration of different UML diagrams and formal 
methods such as Petri nets [6] [7] [8], Colored Petri nets (CPN) 
[9], Object-Z [10], B method [11], LOTOS, Communicating 
Sequential Processes (CSP) [12] and Maude [13].  

For the formalization of UML Activity Diagrams, the most 
important approaches use CSP or CPN formalisms. In [14], the 
authors present a case study of UML Activity Diagram to CSP 
transformation using graph transformation. In [15], the authors 
describe how an UML activity diagram can be transformed into 
a corresponding CSP expression by using the graph rewriting 
language PROGRES. In [16], the author explains how activity 
semantics are translated into colored Petri net semantics.  

On the other hand, the rewriting logic language Maude 
offers the advantage of its sound and complete semantics [2] 
and it is considered as one of very powerful languages in 
specification, programming and verification of non-
deterministic concurrent systems. In this paper, UML Activity 
Diagram semantics are defined in terms of rewriting logic. 

Rewriting logic gives to UML Activity Diagram a simple, more 
intuitive and practical textual version to analyze, without losing 
formal semantic (mathematical rigor, formal reasoning). 

III. BACKGROUND  

A. UML Activity Diagrams 

UML Activity Diagram is one of the important UML 
models. It is utilized to describe an operation step by step in a 
system. Moreover, it models the overall control flow between 
activities and its relationships among several objects with a lot 
of parallel process. It supports the following concepts: choice, 
iteration and concurrency.  Its structure is a connected graph in 
which the nodes are represented by icons and the edges by 
connections. An Activity Diagram includes the following 
constructs: Initial Node, Flow Final node, Activity Final node, 
Decision Node, Merge Node, Fork Node Join Node and 
transition. Only the last construct is represented by a 
connection; the others are represented by icons. These 
constructs are shown in Figure 1. 

 
Fig. 1. UML Activity Diagram constructs. 

B. Rewriting Logic & Maude Language 

In Rewriting Logic, each concurrent system can be 
specified by a rewriting theory. A rewrite theory is defined as a 
4-tuple (Σ, E, L, R), where the signature (Σ, E) is an equational 
theory, L is a set of labels and R is a set of possibly conditional 
labeled rewrite rules that are applied modulo the equations E. 
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An important consequence of the RL definition is that the 
rewrite theory can be viewed as an executable specification of 
the concurrent system that it formalizes. The state is 
represented by an algebraic term, the transition becomes a 
rewriting rule and the distributed structure is expressed as an 
algebraic structure. For more information on the subject see 
[17]. 

Maude is a specification and programming language based on 

Rewriting Logic [18]. It integrates an equational style of 

functional   programming with Rewriting Logic computation. 

Maude’s implementation has been designed with the explicit 

goals of supporting executable specification and formal 

methods applications. Three types of modules are defined in 

Maude specification: The functional modules, the system 

modules and the object oriented modules. In this work, we 

will use only functional and system modules 

Functional Modules: Functional modules define data types 

and operations on them by means of equational theories. In 

other words, Functional modules can be seen as an equational-

style functional program with user definable syntax in which a 

number of sorts, their elements, and functions on those sorts 

are defined.  

System Module: The system module defines the dynamic 

behavior of a system. It augments the functional modules by 

the introduction of rewriting rules. A rewriting rule specifies a 

local concurrent transition which can proceed in a system. The 

execution of such transition, specified by the rule, can take 

place when the left part of a rule matches to a portion of the 

global state of the system and the condition of the rule is valid. 

This type of module augments the functional modules by the 

introduction of rewriting rules.  

In addition, Maude integrates a model checker. Model-

checking is an automatic method for deciding if a specification 

satisfies a set of properties (for more details, see [19]). 

C. AToM3 & Graph Grammar  

AToM3 [5] is a visual tool for Multi-formalism Modeling 
and Meta-Modeling. By means of Meta-Modeling, we can 
describe or model the different kinds of formalisms needed in 
the specification and design of systems. Based on these 
descriptions, AToM3 can automatically generate tools to 
manipulate (create and edit) models in the formalisms of 
interest [20]. 

AToM3’s capabilities are not restricted to these 
manipulations. AToM3 also supports graph rewriting system, 
which uses Graph Grammar to visually guide the procedure of 
model transformation. Graph Grammar [21] is a generalization 
of Chomsky grammar for graphs. It is a formalism in which the 
transformation of graph structures can be modeled and studied. 
The main idea of graph transformation is the rule-based 
modification of graphs as shown in Fig.1. 

 
Fig. 2. Rule-based Modification of Graphs. 

 

 

Graph Grammars are composed of production rules, each 
having graphs in their left and right hand sides (LHS and 
RHS). Rules are compared with an input graph called host 
graph. If a matching is found between the LHS of a rule and a 
subgraph in the host graph, then the rule can be applied and the 
matching subgraph of the host graph is replaced by the RHS of 
the rule. Furthermore, rules may also have a condition that 
must be satisfied in order for the rule to be applied, as well as 
actions to be performed when the rule is executed. A graph 
rewriting system iteratively applies matching rules in the 
grammar to the host graph, until no more rules are applicable. 

IV. OUR APPROACH  

The proposed approach consists of transforming a UML 
Activity diagram to Maude specification. To reach this 
objective, we have proposed a meta-model for UML activity 
diagram and a graph grammar that performs automatically the 
transformation of a UML Activity diagram. In this work, we 
focus on control flow which addresses the control part of UML 
Activity diagram, and we leave the object flow for future 
works. In the following, we describe in details our approach.  

A. Meta-modeling 

To Meta-model Activity diagrams, we proposed the 
simplified meta-model containing thirteen classes linked by 
seven associations and twelve inheritances as shown in Figure 
3. Each association of this meta-model links an instance of the 
source class with a single instance of the destination Class. 
Some classes are described as follows: 

ActionNode Class: represents the Action constructs of the 
diagram. Graphically it is represented by a rectangle with 
rounded corners.  An Action node has Name attribute, and it 
can be connected with all control nodes, others Action nodes, 
Object nodes or Pin nodes. 

InitialNode Class: represents the beginning of an activity 
diagram. Graphically it is represented by a small solid circle. It 
has a constraint which prohibits the existence of incoming 
Arcs.  

To fully define our meta-models, we have also specified the 
graphical appearance of each entity of the formalisms 
according to its appropriate graphical notation (shown in 
Figure 1). Given our meta-model, we have used AToM3 to 
generate a palate of buttons allowing the user to create the 
constructs defined in meta-model (see Figure 5).  
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Fig. 3. Simplificed UML Activity Diagram Meta-Model 

B. Representation of UML Activity Diagram in Maude 

In this section, we will explain how to express a UML 
Activity Diagram in Maude language by using two Modules. 
We define first a Basic_ActivityDiagram functional module 
that describes basic operations of Activity Diagram. This 
module is described as follows: 

fmod Basic_ActivityDiagram is 

 

sort CONFIGURATION . 

sorts InitialNode ActivityFinal FlowFinal Action . 

subsorts InitialNode ActivityFinal FlowFinal Action < CONFIGURATION . 

op null : -> CONFIGURATION . 

op _ _ : CONFIGURATION CONFIGURATION -> CONFIGURATION [assoc comm 

id:null] . 

op Isin : ActivityFinal CONFIGURATION -> Bool . 

vars E E’ : ActivityFinal . 

vars S conf : CONFIGURATION . 

eq Isin (E, Null) = false . 

eq Isin (E, E’ S) =  E==E’ or Isin (E, S)  . 

 

endfm 

It contains the declaration of new type called 
CONFIGURATION which represents the current configuration 
of an Activity diagram instance. The configuration of an 
Activity diagram consists of Initial Node, Activity Final, Flow 
Final and/or Actions which are declared as subsorts of 
CONFIGURATION. In addition, this module defines 
operations used for manipulating configuration elements, as 
well as equations implementing these operations. For example, 
The Isin operation returns a Boolean value which indicates if 
Activity Final sub-configuration is in a configuration. 

 

 

TABLE I.  REPRENTATION OF CONTROL STRUCTURES IN MAUDE 

Activity Diagram Control 

Structures 

Corresponding Maude Rewriting 

Rules 
Initial to Action 

 

rl  [Initial]:  Initial =>  Act1 

Action to Action 

 

rl  [Transition]:  Act1  =>  Act2 

Action to Final Flow 

 

rl  [FinalFlow]:  Act1  =>  FinalFlow 

Action to Final Activity 

 

rl  [FinalAction]:  Act1  =>  FinalActivity   

Merge Node 

 

rl  [Merge]:  Act1  =>  Act4  

rl  [Merge]:  Act2  =>  Act4   

rl  [Merge]:  Act3  =>  Act4   

Join Node 

 

rl [Joint]:  Act1  Act2  Act3  =>  Act4   

Decision Node 

 

rl  [DecisionC1]:  Act1  =>  Act2  

rl  [DecisionC2]:  Act1  =>  Act3   
rl  [DecisionC3]:  Act1  =>  Act4 

Fork Node 

 

rl  [Fork]:  Act1  =>  Act2  Act3  Act4   

The second module is ActivityDiagram system module that 
describes transitions firing and control nodes with their 
conditions (if any) by rewriting rules as shown in Table I.  

We note that all rewriting rules (except Initial rewriting 
rule) are enabled when the Activity Final is not in the current 
configuration of Activity diagram. 

C. Automatic Translation (Graph Grammar) 

To generate automatically Maude specification from a 
UML Activity diagram, we have proposed a Graph Grammar 
(GG) to traverse the Activity diagram and generate the 
corresponding code in Maude. The advantage of using a graph 
grammar to generate the textual code is the graphical and high-
level fashion.  

The graph grammar has an initial Action which opens the 
file where the code will be generated and decorates all the 
elements in the model with temporary attributes to be used in 
the conditions specified in the GG rules. For each element, we 
use two attributes: Current and Visited. The Current attribute is 
used to identify the element in the model whose code has to be 
generated, whereas the Visited attribute is used to indicate 
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whether code for the element has been generated yet. In our 
GG, we have proposed sixteen rules which will be applied in 
ascending order by the rewriting system until no more rules are 
applicable. We are concerned here by code generation, so none 
of these GG rules will change the Activity diagram models. For 
lack of space, we only describe the following rules (see Figure 
4): 

Rule1: Gen_Rule_InitialNode2Action (priority 1): is applied 
to locate the initial node which is related to an Action node, 
and generate the corresponding Maude specification. 

Rule5: Gen_LeftPartOfForkNodeRule (priority 3): is applied 
to locate a Fork node which is related to current Action node 
with an incoming transition, and generate the left part of the 
corresponding rewriting rule in Maude.  

 

Fig. 4. Graph Grammar to generate Maude specification from an Activity 

Diagram 

 

Rule6: Gen_RightPartOfForkNodeRule (priority 3): is 
applied to locate an Action node related to the current Fork 
node with an incoming transition, and generate its name in the 
right part of the corresponding rewriting rule in Maude.  

Rule7: EndOfForkNodeTranslation (priority 6): is applied to 
locate the current Fork node whose processing has been 
terminated, and mark it as Visited. In addition, it generates the 
condition of the rewriting rule. 

The graph grammar has also a final action which erases the 
temporary attributes from the entities and closes the output file. 

V. CASE STUDY 

To evaluate the practical usefulness of the proposed 
approach, we consider a simple example of order processing 
application. In this diagram, the first action is to receive 
requested order. After order is accepted and all required 
information is filled in, payment is accepted and order is 
shipped. We Note that this example allowing order shipment 
before invoice is sent or payment is confirmed. The Figure 5 
presents the UML Activity diagram of the Process Order 
created in our tool. 

To analyze this behavioral specification of the order 
processing application, we have to transform this specification 
into its equivalent Maude specification. To realize this 
transformation in our tool, we have to execute the proposed 
Graph Grammar. The resulted Maude specification of the 
automatic transformation is shown in Figure 6. 

In order to perform the analysis by simulation of the 
resulted Maude specification, we have invoked the rewriting 
logic Maude system. Simulation consists of transforming the 
initial state to another by doing one or many rewriting actions. 
Therefore, in addition to generated file, the user may give to 
the Simulator the number of rewriting steps if (he/she) wants to 
check intermediary states. If this number is not given, the 
Simulator continues the simulation operation until reaching a 
final state. The Result configuration (final state) of the 
simulation is given in the same manner as configuration. In our 
example (see Figure 7), we have asked the application to 
perform the simulation from the initial node. 

 

LHS 

1.- Gen_Rule_InitialNode2Action: 

 RHS 

:: 

CONDITION 

              (Node (3). Current  = = 0) And (Node (3). Visited = = 0) 

ACTION 

              Node (3). Current  = 1; Node (3). Visited =  0; 

             WriteInFile ( 'rl  [IntAct]:  Initial => ' + Node (3).Name); 

<ANY> <COPIED> 

LHS 

5.- Gen_LeftPartOfForkNodeRule: 

 RHS 

:: 

CONDITION 

              (Node (1). Current  = = 1) And (Node (1). Visited = = 0) 

              (Node (3). Current  = = 0) And (Node (3). Visited = = 0) 

ACTION 

              Node (1). Current  =  0; Node (1). Visited = 1; 

              Node (3). Current  = 1; Node (3). Visited = 0; 

             WriteInFile ( 'crl  [ForAct]: ' + Node (1).Name + '=> '  ); 

 

<ANY> <COPIED> 

LHS 

6.- Gen_  RightPartOfForkNodeRule: 

 RHS 

:: 

CONDITION 

              (Node (1). Current  = = 1) And (Node (1). Visited = = 0) 

              (Node (3). Current  = = 0) And (Node (3). Visited = = 0) 

 

ACTION 

              Node (1). Current  = 1; Node (1). Visited = 0; 

              Node (3). Current  = 1; Node (3). Visited = 0; 

             WriteInFile ( Node (3).Name  ); 

 

 

<ANY> <COPIED> 

LHS 

7.- Gen EndOfForkNodeTranslation : 

 RHS 

:: 

CONDITION 

              (Node (1). Current = = 1) And (Node (1). Visited = = 0) 

ACTION 

             Node (1). Current  = 0 ; Node (1). Visited = = 1; 

             WriteInFile ('   if (not Isin ( Final_Action, conf)) ); 
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Fig. 5. UML Activity diagram created in our tool 

 

Fig. 6. Generated Maude specification  

 

Fig. 7. Execution of order processing example under Maude system. 

VI. CONCLUSION 

In this paper, we have presented a formal framework and an 
environment tools based on the combined use of Meta-
Modeling and Graph Grammars for the Modeling and analysis 
of global dynamic behavior in UML models using Maude 
language. With Meta-modeling, we have defined the syntactic 
aspect of UML Activity Diagrams, and then we have used the 
meta-modeling tool AToM3 to generate its visual modeling 
environment. By means of Graph Grammar, we have extended 
the capabilities of our framework to transform UML Activity 
Diagrams into an equivalent Maude specification. The resulted 
specification can be used to verify system properties using 
Maude model checking. 

In a future work, we plan to transform composite action nodes 

and complexes links in Maude specification. We plan also to 

perform some verification of properties using Maude model 

checking. 
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