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Abstract- In this paper, we simulate the numerical solutions of fuzzy Fredholm integral equations based on the reproducing 

kernel algorithm. Using parametric form of fuzzy numbers we convert a linear fuzzy integral equation into a linear system of 

integral equations in crisp case. The solution methodology is based on generating the orthogonal basis from the obtained kernel 

functions; whilst the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of 

their parametric form in an appropriate space. Numerical example is provided to illustrate potentiality of our algorithm for solving 

such fuzzy equations. 
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I. INTRODUCTION 

The fuzzy Fredholm integral equations (FFIEs) are 

important part of the fuzzy analysis theory and they have 

the important value of theory and application in control 

theory, measure theory, and radiation transfer in a semi-

infinite atmosphere. Generally, many real-world problems 

are too complex to be defined in precise terms; uncertainty 

is often involved in any real-world design process. Fuzzy 

sets provide a widely appreciated tool to introduce 

uncertain parameters into mathematical applications. In 

many applications, at least some of the parameters of the 

model should be represented by fuzzy numbers rather than 

crisp numbers. Thus, it is immensely important to develop 

appropriate and applicable algorithm to accomplish the 

mathematical construction that would appropriately treat 

FFIEs and solve them. 

The aim of this paper is to extend the application of the 

reproducing kernel Hilbert space (RKHS) method to 

provide numerical solution for the linear FFIEs of the form 

𝑥(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑥(𝜏)𝑑𝜏
1

0

, 0 ≤ 𝜏, 𝑡 ≤ 1, (1) 

where ℎ(𝑡, 𝜏) is continuous arbitrary crisp kernel functions 

over the square 0 ≤ 𝜏, 𝑡 ≤ 1. Here, ℝℱ  denote the set of 

fuzzy numbers on ℝ. 

Reproducing kernel theory has important application in 

numerical analysis, computational mathematics, image 

processing, machine learning, finance, and probability and 

statistics [1-4]. Recently, a lot of research work has been 

devoted to the applications of the RKHS method for wide 

classes of stochastic and deterministic problems involving 

operator equations, differential equations, integral 

equations, and integro-differential equations. The RKHS 

method was successfully used by many authors to 

investigate several scientific applications side by side with 

their theories. The reader is kindly requested to go through 

[5-13] in order to know more details about the RKHS 

method, including its history, its modification for use, its 

scientific applications, its symmetric kernel functions, and 

its characteristics. 

The RKHS method possess several advantages; first, it 

is of global nature in terms of the solutions obtained as 

well as its ability to solve other mathematical, physical, 

and engineering problems; second, it is accurate and need 

less effort to achieve the results; third, in the RKHS 

method, it is possible to pick any point in the interval of 

integration and as well the approximate solution will be 

applicable; fourth, the method does not require 

discretization of the variables, and it is not effected by 

computation round off errors and one is not faced with 

necessity of large computer memory and time. 

Recently, the numerical solvability of FFIEs has been 

studied by several authors using different numerical or 

analytical methods. The reader is asked to refer to [14-17] 

in order to know more details about these analyzes and 

methods, including their kinds and history, their 

modifications and conditions for use, their scientific 

applications, their importance and characteristics, and their 

relationship including the differences. 

The organization of the paper is as follows. In the next 

section, we present some necessary definitions and 

preliminary results from the fuzzy calculus theory. The 
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procedure of solving FFIEs is presented in section III. In 

section IV, reproducing kernel algorithm is built and 

introduced. Numerical algorithm and simulation results are 

presented in Section V. This article ends in section VI with 

some concluding remarks. 

II. FUZZY CALCULUS THEORY 

Fuzzy calculus is the study of theory and applications of 

integrals and derivatives of uncertain functions. This 

branch of mathematical analysis, extensively investigated 

in the recent years, has emerged as an effective and 

powerful tool for the mathematical modeling of several 

engineering and scientific phenomena. In this section, we 

present some necessary definitions from fuzzy calculus 

theory and preliminary results. 

Let 𝑋 be a nonempty set, a fuzzy set 𝑢 in 𝑋 is 

characterized by its membership function 𝑢: 𝑋 → [0,1]. 

Thus, 𝑢(𝑠) is interpreted as the degree of membership of 

an element 𝑠 in the fuzzy set 𝑢 for each 𝑠 ∈ 𝑋. A fuzzy set 

𝑢 on ℝ is called convex, if for each 𝑠, 𝑡 ∈ ℝ and 𝜆 ∈ [0,1], 

𝑢(𝜆𝑠 + (1 − 𝜆)𝑡) ≥ min{𝑢(𝑠), 𝑢(𝑡)}, is called upper 

semicontinuous, if {𝑠 ∈ ℝ: 𝑢(𝑠) > 𝑟} is closed for each 

𝑟 ∈ [0,1], and is called normal, if there is 𝑠 ∈ ℝ such that 

𝑢(𝑠) = 1. The support of a fuzzy set 𝑢 is defined as 

{𝑠 ∈ ℝ: 𝑢(𝑠) > 0}. 

Definition II.1 [18] A fuzzy number 𝑢 is a fuzzy subset of 

the real line with a normal, convex, and upper 

semicontinuous membership function of bounded support. 

For each 𝑟 ∈ (0,1], set [𝑢]𝑟 = {𝑠 ∈ ℝ: 𝑢(𝑠) ≥ 𝑟} and 

[𝑢]0 = {𝑠 ∈ ℝ: 𝑢(𝑠) > 0}. Then, it easily to establish that 

𝑢 is a fuzzy number if and only if [𝑢]𝑟 is compact convex 

subset of ℝ for each 𝑟 ∈ [0,1] and [𝑢]1 ≠ 𝜙 [19]. Thus, if 

𝑢 is a fuzzy number, then [𝑢]𝑟 = [𝑢1(𝑟), 𝑢2(𝑟)], where 

𝑢1(𝑟) = min{𝑠: 𝑠 ∈ [𝑢]
𝑟} and 𝑢2(𝑟) = max{𝑠: 𝑠 ∈ [𝑢]

𝑟} 

for each 𝑟 ∈ [0,1]. The symbol [𝑢]𝑟 is called the 𝑟-cut 

representation or parametric form of a fuzzy number 𝑢. 

Theorem II.1 [19] Suppose that the functions 

𝑢1, 𝑢2: [0,1] → ℝ satisfy the following conditions; first, 𝑢1 

is a bounded increasing and 𝑢2 is a bounded decreasing 

with 𝑢1(1) ≤ 𝑢2(1); second, for each 𝑘 ∈ (0,1], 𝑢1 and 𝑢2 

are left-hand continuous at 𝑟 = 𝑘; third, 𝑢1 and 𝑢2 are 

right-hand continuous at 𝑟 = 0. Then 𝑢:ℝ → [0,1] defined 

by 𝑢(𝑠) = sup{𝑟: 𝑢1(𝑟) ≤ 𝑠 ≤ 𝑢2(𝑟)}, is a fuzzy number 

with parameterization [𝑢1(𝑟), 𝑢2(𝑟)]. Furthermore, if 

𝑢:ℝ → [0,1] is a fuzzy number with parameterization 

[𝑢1(𝑟), 𝑢2(𝑟)], then the functions 𝑢1 and 𝑢2 satisfy the 

aforementioned conditions. 

In general, we can represent an arbitrary fuzzy number 

𝑢 by an order pair of functions (𝑢1, 𝑢2) which satisfy the 

requirements of Theorem II.1. Frequently, we will write 

simply 𝑢1𝑟 and 𝑢2𝑟 instead of 𝑢1(𝑟) and 𝑢2(𝑟), 

respectively. 

The metric structure on ℝℱ  is given by 𝑑∞: ℝℱ ×

ℝℱ → ℝ+ ∪ {0} such that 𝑑∞(𝑢, 𝑣) = sup
𝑟∈[0,1]

  max{|𝑢1𝑟 −

𝑣1𝑟|, |𝑢2𝑟 − 𝑣2𝑟|} for arbitrary fuzzy numbers 𝑢 and 𝑣. It is 

shown in [20] that (ℝℱ , 𝑑∞) is a complete metric space. 

Definition II.2 [19] Suppose that 𝑥: [0,1] → ℝℱ, for each 

partition ℘ = {𝑡0
∗, 𝑡1

∗, … , 𝑡𝑛
∗} of [0,1] and for arbitrary 

points 𝜉𝑖 ∈ [𝑡𝑖−1
∗ , 𝑡𝑖

∗], 1 ≤ 𝑖 ≤ 𝑛, let ℜ℘ = ∑ 𝑥(𝜉𝑖)(𝑡𝑖
∗ −𝑛

𝑖=1

𝑡𝑖−1
∗ ) and Δ = max

1≤𝑖≤𝑛
|𝑡𝑖
∗ − 𝑡𝑖−1

∗ |. Then the definite integral 

of 𝑥(𝑡) over [0,1] is defined by ∫ 𝑥(𝑡)𝑑𝑡
1

0
= lim

Δ→0
ℜ℘ 

provided the limit exists in the metric space (ℝℱ , 𝑑∞). 

Theorem II.2 [19] Let 𝑥: [0,1] → ℝℱ  be continuous 

fuzzy-valued function and put [𝑥(𝑡)]𝑟 = [𝑥1𝑟(𝑡), 𝑥2𝑟(𝑡)] 

for each 𝑟 ∈ [0,1]. Then ∫ 𝑥(𝑡)𝑑𝑡
1

0
 exist, belong to ℝℱ , 𝑥1𝑟  

and 𝑥2𝑟 are integrable functions on [0,1], and 

[∫ 𝑥(𝑡)𝑑𝑡
1

0
]
𝑟

= ∫ [𝑥(𝑡)]𝑟𝑑𝑡
1

0
= [∫ 𝑥1𝑟(𝑡)𝑑𝑡

1

0
, ∫ 𝑥2𝑟(𝑡)𝑑𝑡

1

0
]. 

III. SOLVING FFIEs 

In this section, we study FFIEs using the concept of 

Riemann integrability in which the FFIE is converted into 

equivalent system of crisp integral equations (CIEs). 

Furthermore, an efficient computational algorithm is 

provided to guarantee the procedure. 

Next, FFIE (1) is first formulated as an ordinary set of 

integral equations, after that, a new discretized form of 

FFIE (1) is presented. Anyhow, in order to apply our 

RKHS algorithm, we set 𝐻(𝑡, 𝜏, 𝑥(𝜏)): = ℎ(𝑡, 𝜏)𝑥(𝜏), 

further, we write the fuzzy function 𝑥(𝑡) in term of its 𝑟-

cut representation forms to get [𝑥(𝑡)]𝑟 = [𝑥1𝑟(𝑡), 𝑥2𝑟(𝑡)]. 

By considering the parametric form for both sides of FFIE 

(1), one can write 

  [𝑥(𝑡)]𝑟 = ∫ [𝐻(𝑡, 𝜏, 𝑥(𝜏))]
𝑟
𝑑𝜏

1

0

, 

where [𝐻]𝑟 = [𝐻1𝑟 , 𝐻2𝑟] in which 𝐻1𝑟 , 𝐻1𝑟  are given in the 

form of 𝐻1𝑟 = min{ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏), ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)} and 

𝐻2𝑟 = max{ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏), ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)}. 

Prior to applying the RKHS methods for solving FFIE 

(1) in its parametric form, we suppose that the crisp kernel 

function ℎ(𝑡, 𝜏) is nonnegative for 0 ≤ 𝜏 ≤ 𝑐1 and 

nonpositive for 𝑐1 ≤ 𝜏 ≤ 1. Therefore, according to the 

previous results the FFIE (1) can be translated into the 

following equivalent form: 

 

𝑥1𝑟(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏)𝑑𝜏
𝑐1

0

+∫ ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)𝑑𝜏
1

𝑐1

,

𝑥2𝑟(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)𝑑𝜏
𝑐1

0

+∫ ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏)𝑑𝜏
1

𝑐1

.

 (2) 
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 Definition III.1 Let 𝑥: [0,1] → ℝℱ  be continuous fuzzy-

valued function. If 𝑥 satisfy FFIE (1), then we say that 𝑥 is 

a fuzzy solution of FFIE (1). 

The object of the next algorithm is to implement a 

procedure to solve FFIE (1) in parametric form in term of 

its 𝑟-cut representation, where the new obtained system 

consists of two CIEs. 

Algorithm III.1 To find the fuzzy solution of FFIE (1), we 

discuss the following main steps: 

Input: The independent interval [0,1], and the unit truth 

interval [0,1]. 

Output: The fuzzy solution of FFIE (1) on [0,1]. 

 Step 1: Set [𝐻]𝑟 = [𝐻1𝑟 , 𝐻2𝑟], 

Step 2: Solve the following system of CIEs for 𝑥1𝑟(𝑡) and 

𝑥2𝑟(𝑡): 

    

𝑥1𝑟(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏)𝑑𝜏
𝑐1

0

+∫ ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)𝑑𝜏
1

𝑐1

,

𝑥2𝑟(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑥2𝑟(𝜏)𝑑𝜏
𝑐1

0

+∫ ℎ(𝑡, 𝜏)𝑥1𝑟(𝜏)𝑑𝜏
1

𝑐1

.

 

 Step 3: Ensure that the solution [𝑥1𝑟(𝑡), 𝑥2𝑟(𝑡)] are valid 

level sets for each 𝑟 ∈ [0,1]. 

 Step 4: Construct the fuzzy solution 𝑥(𝑡) such that 

[𝑥(𝑡)]𝑟 = [𝑥1𝑟(𝑡), 𝑥2𝑟(𝑡)] for each 𝑟 ∈ [0,1]. 

 Step 5: Stop. 

IV. REPRODUCING KERNEL ALGORITHM 

In this section, we utilize the reproducing kernel concept 

in order to construct the reproducing kernel Hilbert space 

𝑊2
𝑚[0,1]. 

Prior to discussing the applicability of the RKHS 

method on solving FFIEs and their associated numerical 

algorithms, it is necessary to present an appropriate brief 

introduction to preliminary topics from the reproducing 

kernel theory. 

Definition IV.1 [4] Let ℋ be a Hilbert space of function 

𝜙:Ω ⟶ ℱ on a set Ω. A function 𝐾:Ω × Ω ⟶ ℂ is a 

reproducing kernel of ℋ if the following conditions are 

satisfied. Firstly, 𝐾(. , 𝑡) ∈ ℋ for each 𝑡 ∈ Ω. Secondly, 

〈𝜙, 𝐾(. , 𝑡)〉 = 𝜙(𝑡) for each 𝜙 ∈ ℋ and each 𝑡 ∈ Ω.  

The second condition in Definition IV.1 is called “the 

reproducing property” which means that, the value of the 

function 𝜙 at the point 𝑡 is reproduced by the inner 

product of 𝜙 with 𝐾(. , 𝑡). Indeed, a Hilbert spaces ℋ of 

functions on a nonempty abstract set Ω is called a 

reproducing kernel Hilbert spaces if there exists a 

reproducing kernel 𝐾 of ℋ. 

Definition IV.2 The inner product space 𝑊2
𝑚[0,1] is 

defined as 𝑊2
𝑚[0,1] = {𝑧: 𝑧, 𝑧′, … , 𝑧(𝑚−1) are absolutely 

continuous real-valued function on [0,1] and 𝑧(𝑚) ∈

𝐿2[0,1]}. The inner product and the norm in 𝑊2
𝑚[0,1] are 

defined as 〈𝑧1(𝑡), 𝑧2(𝑡)〉𝑊2𝑚 = ∑ 𝑧1
(𝑖)(0)𝑧2

(𝑖)(0)𝑚−1
𝑖=0 +

∫ 𝑧1
(𝑚)(𝑡)𝑧2

(𝑚)(𝑡)𝑑𝑡
1

0
 and ‖𝑧1‖𝑊2𝑚 = √〈𝑧1(𝑡), 𝑧1(𝑡)〉𝑊2𝑚 , 

respectively, where 𝑧1, 𝑧2 ∈ 𝑊2
𝑚[0,1]. 

The Hilbert space 𝑊2
𝑚[0,1] is called a reproducing 

kernel if for each fixed 𝑡 ∈ [0,1] and any 𝑧(𝑠) ∈

 𝑊2
𝑚[0,1], there exist 𝐾(𝑡, 𝑠) ∈ 𝑊2

𝑚[0,1] (simply 𝐾𝑡(𝑠)) 

and 𝑠 ∈ [0,1] such that 〈𝑧(𝑠), 𝐾𝑡(𝑠)〉𝑊2𝑚 = 𝑧(𝑡). 

Theorem IV.1 The Hilbert space 𝑊2
𝑚[0,1] is a complete 

reproducing kernel and its reproducing kernel function 

𝑅𝑡
𝑚(𝑠) can be written as 

  𝑅𝑡
𝑚(𝑠)|𝑠≤𝑡 = ∑

1

(𝑖!)2
𝑡𝑖𝑠𝑖

𝑚−1

𝑖=0

 

                        +
1

((𝑚 − 1)!)
2∫(𝑡 − 𝜏)

𝑚−1(𝑠 − 𝜏)𝑚−1𝑑𝜏

𝑠

0

 

  𝑅𝑡
𝑚(𝑠)|𝑠>𝑡 = ∑

1

(𝑖!)2
𝑡𝑖𝑠𝑖

𝑚−1

𝑖=0

 

                        +
1

((𝑚 − 1)!)
2∫(𝑡 − 𝜏)

𝑚−1(𝑠 − 𝜏)𝑚−1𝑑𝜏

𝑡

0

 

Definition IV.3 The inner product space 𝑊𝑚[0,1] is 

defined as 𝑊𝑚[0,1] = {𝑧 = (𝑧1, 𝑧2)
𝑇: 𝑧1, 𝑧2 ∈ 𝑊2

𝑚[0,1]}. 

The inner product and the norm in 𝑊𝑚[0,1] are building 

as 〈𝑧(𝑡), 𝑤(𝑡)〉𝑊𝑚 = ∑ 〈𝑧𝑖(𝑡), 𝑤𝑖(𝑡)〉𝑊2𝑚
2
𝑖=1  and ‖𝑧‖𝑊𝑚 =

√∑ ‖𝑧𝑖‖𝑊2𝑚
22

𝑖=1 , respectively, where 𝑧(𝑡), 𝑤(𝑡) ∈ 𝑊𝑚[0,1]. 

To deal with System (2) in more realistic form via the 

RKHS approach, define the linear operator 𝑣𝑖𝑗 : 𝑊2
2[0,1] →

𝑊2
1[0,1], 𝑖, 𝑗 = 1,2 such that 

  𝑣𝑖𝑗𝑧(𝑡) =

{
 
 

 
 𝑧(𝑡) − ∫ ℎ(𝑡, 𝜏)𝑧(𝜏)𝑑𝜏

𝑐1

0

, 𝑖 = 𝑗,

          −∫ ℎ(𝑡, 𝜏)𝑧(𝜏)𝑑𝜏
1

𝑐1

, 𝑖 ≠ 𝑗.

 

Put 0 = [
0
0
], 𝑋𝑟 = [

𝑥1𝑟
𝑥2𝑟
], 𝑉 = [

𝑣11 𝑣12
𝑣21 𝑣22

], and define the 

mapping 𝑉:𝑊2[0,1] → 𝑊1[0,1]. Then, System (2) can be 

written in a new form equivalent to 𝑉𝑋𝑟(𝑡) = 0. 

V. SIMULATION RESULT 

To show behavior, properties, and applicability of the 

present RKHS method, linear FFIEs will be solved 

numerically in this section. In the process of computation, 

all the symbolic and numerical computations are 

performed by using MAPLE 13 software package. 

Algorithm V.1 To approximate the solution 𝑥𝑛(𝑡) of 𝑥(𝑡) 

for FFIE (1), we do the following main steps: 

Input: The dependent interval [0,1], the unit truth interval 

[0,1], the integers 𝑛,𝑚, the kernel functions 𝑅𝑡
1(𝑠), 𝑅𝑡

2(𝑠), 

the linear operator 𝑉, and the crisp kernel functions ℎ(𝑡, 𝜏). 
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Output: The RKHS solution 𝑋𝑟
𝑛(𝑡) of 𝑋𝑟(𝑡) for System 

(2) and thus the RKHS solution 𝑥𝑛(𝑡) of 𝑥(𝑡) for FFIE 

(1). 

 Step 1: Write 𝑋𝑟 = [
𝑥1𝑟
𝑥2𝑟

] and 𝑋𝑟
𝑛(𝑡) = [

𝑥1𝑟
𝑛

𝑥2𝑟
𝑛 ]. 

 Step 2: Fixed 𝑡 in [0,1] and set 𝑠 ∈ [0,1]; 

             If 𝑠 ≤ 𝑡, set 𝑅𝑡
2(𝑠) = 1 + 𝑡𝑠 −

1

6
𝑡2(𝑡 − 3𝑠); 

                   Else set 𝑅𝑡
2(𝑠) = 1 + 𝑡𝑠 −

1

6
𝑠2(𝑠 − 3𝑡); 

             For 𝑖 = 1,2, . . . , 𝑛, ℎ = 1,2, . . . , 𝑚, 𝑗 = 1,2: 

                   Set 𝑡𝑖 =
𝑖−1

𝑛−1
; 

                   Set 𝑟ℎ =
ℎ−1

𝑚−1
; 

                   Set 𝜓𝑖𝑗(𝑡) = [
[𝑣𝑗1𝑅𝑡

2(𝑠)]|
𝑠=𝑡𝑖

[𝑣𝑗2𝑅𝑡
2(𝑠)]|

𝑠=𝑡𝑖

]; 

             Output: the orthogonal function system 𝜓𝑖𝑗(𝑡). 

 Step 3: For 𝑙 = 2,3. . . , 𝑛, 𝑘 = 1,2. . . , 𝑙: 

                   Set 𝑑𝑙 = √‖𝜓𝑙‖𝑊2
2 −∑ 𝑐𝑙𝑝

2𝑙−1
𝑝=1 ; 

                   Set 𝑐𝑙𝑘 = 〈𝜓𝑙 , 𝜓̅𝑘〉𝑊2; 

                   If 𝑘 ≠ 𝑙, then set 𝛽𝑙𝑘 = −
1

𝑑𝑙
∑ 𝑐𝑙𝑝𝛽𝑝𝑘
𝑖−1
𝑝=𝑘 ; 

                    Else set 𝛽𝑙𝑙 =
1

𝑑𝑙
; 

                    Else set 𝛽11 =
1

‖𝜓1‖𝑊2
; 

Output: the orthogonalization coefficients 𝛽𝑙𝑘. 

 Step 4: For 𝑙 = 2,3. . . , 𝑛 − 1, 𝑘 = 1,2. . . , 𝑙 − 1: 

                   Set 𝜇̅𝑙(𝑡) = ∑ 𝛽𝑙𝑘𝜇𝑘(𝑡)
𝑙
𝑘=1 ; 

Output: the orthonormal function system 𝜇̅𝑙(𝑡). 

 Step 5: Set 𝑋𝑟ℎ
0 (𝑡1) = 0; 

                   For 𝑖 = 1,2, . . . , 𝑛: 

                        Set 𝛼𝑘 = {

𝑥1𝑟 (𝑡𝑘+1
2

) , 𝑘 is odd,

𝑥2𝑟 (𝑡𝑘
2

) , 𝑘 is even;
 

                        Set 𝑋𝑟ℎ
𝑖 (𝑡𝑖) = ∑ (∑ 𝛽𝑖𝑘𝛼𝑘

𝑖
𝑘=1 )𝜇̅𝑖(𝑡)

𝑖
𝑖=1 ; 

Output: the RKHS solution 𝑋𝑟
𝑛(𝑡) of 𝑋𝑟(𝑡). 

 Step 6: Write [𝑥𝑛(𝑡)]𝑟 = [𝑥1𝑟
𝑛 , 𝑥2𝑟

𝑛 ] to get the RKHS 

solution in which [𝑥(𝑡)]𝑟 = [𝑥1𝑟 , 𝑥2𝑟]. 

 Step 7: Stop. 

Here, we taking 𝑡𝑖 =
𝑖−1

𝑛−1
, 𝑖 = 1,2, … , 𝑛 and 𝑟ℎ =

ℎ−1

𝑚−1
, 

ℎ = 1,2, … ,𝑚 with the reproducing kernel functions 𝑅𝑡
1(𝑠) 

and 𝑅𝑡
2(𝑠) on [0,1] in which Algorithms III.1 and V.1 are 

used throughout the computations. 

Example V.1 Consider the following FFIE: 

  𝑥(𝑡) =
1

3
𝜋 sin(𝜋𝑡) 𝑢 + ∫ 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) 𝑥(𝜏)𝑑𝜏

1

0

, 

where 0 ≤ 𝜏, 𝑡 ≤ 1. The exact solution is 𝑥(𝑡) =
𝑣𝜋 sin(𝜋𝑡). Here, [𝑢]𝑟 = [−5𝑟3 − 2𝑟2 − 7𝑟 + 20,2𝑟3 +
5𝑟2 + 7𝑟 − 8] and [𝑣]𝑟 = [−𝑟3 − 𝑟 + 4, 𝑟2 + 𝑟]. 

Anyhow, for approximating the fuzzy solution, we 

have the following system of CIEs taking into account that 

the crisp kernel function ℎ(𝑡, 𝜏) = 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) is 

nonnegative on 0 ≤ 𝜏 ≤
1

2
 and nonpositive on 

1

2
≤ 𝜏 ≤1, 

regardless the effect of the independent variable 𝑡 on [0,1]: 

  𝑥1𝑟(𝑡) =
1

3
𝜋 sin(𝜋𝑡) 𝑢1𝑟

+∫ 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) 𝑥1𝑟(𝜏)𝑑𝜏

1
2

0

+∫ 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) 𝑥2𝑟(𝜏)𝑑𝜏
1

1
2

, 

  𝑥2𝑟(𝑡) =
1

3
𝜋 sin(𝜋𝑡) 𝑢2𝑟

+∫ 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) 𝑥2𝑟(𝜏)𝑑𝜏

1
2

0

+∫ 𝜋 sin(2𝜋𝜏) sin(𝜋𝑡) 𝑥1𝑟(𝜏)𝑑𝜏
1

1
2

. 

The absolute errors of numerically approximating 

𝑥1𝑟(𝑡) and 𝑥2𝑟(𝑡) for the corresponding CIE system have 

been calculated for various 𝑡 and 𝑟 as shown in Tables 1 

and 2. Anyhow, it is clear from the tables that, the 

approximate solutions are in close agreement with the 

exact solutions. 

VI. CONCLUSION 

The study of FFIEs forms a suitable setting for the 

mathematical modeling of real-world problems in which 

uncertainty or vagueness pervades. The aim of this paper is 

to propose a numerical method and the corresponding 

algorithm to solve linear FFIEs. Numerical results show 

that the presented method is of higher precision and is easy 

to apply in programming. 
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Table 1: The absolute errors of approximating 𝑥1𝑟(𝑡) using RKHS method. 

𝑡𝑖   𝑟 = 0  𝑟 = 0.25  𝑟 = 0.5  𝑟 = 0.75  𝑟 = 1 

0.16  2.2167 × 10−8  2.0686 × 10−8  2.7409 × 10−8  2.7281 × 10−8  2.3836 × 10−8 

0.32  3.6612 × 10−8  4.9143 × 10−8  4.7620 × 10−8  3.2652 × 10−8  3.6097 × 10−8 

0.64  7.3751 × 10−8  6.6190 × 10−8  6.3982 × 10−8  6.7446 × 10−8  6.5208 × 10−8 

0.96  8.3262 × 10−8  7.9022 × 10−8  8.1784 × 10−8  7.2881 × 10−8  8.0809 × 10−8 
 

Table 2: The absolute errors of approximating 𝑥2𝑟(𝑡) using RKHS method. 

𝑡𝑖   𝑟 = 0  𝑟 = 0.25  𝑟 = 0.5  𝑟 = 0.75  𝑟 = 1 

0.16  2.3445 × 10−8  2.1964 × 10−8  2.8124 × 10−8  2.3027 × 10−8  2.6190 × 10−8 

0.32  3.7027 × 10−8  3.7379 × 10−8  3.5536 × 10−8  3.3262 × 10−8  3.4584 × 10−8 

0.64  6.8755 × 10−8  6.9376 × 10−8  6.2167 × 10−8  6.7450 × 10−8  6.4224 × 10−8 

0.96  7.6651 × 10−8  8.8084 × 10−8  7.5751 × 10−8  8.6631 × 10−8  8.1507 × 10−8 
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