
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

VeSimulator A Location-Based Vehicle Simulator

Model for IoT Applications

Osama Oransa

Arab Academy for Science, Technology and Maritime Transport

Cairo, Egypt

osama_oransa@hotmail.com

Mostafa Abdel-Azim

College of Computing & Information Technology

Arab Academy for Science, Technology and Maritime Transport

Cairo, Egypt

melbakary@aast.edu

Abstract— Location-based services (LBS) are important aspects in today business models where a lot of use cases are built around

the identification of user location such as the advertisements, asset tracking, geo-fence, and a lot of different things that utilize such

location information. With the maturity of Global Positioning System (GPS) technology many different devices are shipped with built-in

GPS unit, this enables the Internet of Things (IoT) application to utilize this location information and build many location-based

business models including health, transportation, marketing and social services. Smart transportation is one of these important IoT

applications in which LBS play a major role. In this research we built a location-based simulator model that can be used in developing

internet of things applications. The research focused on developing a generic simulator model that can be customized according to the

used application, so we can develop IoT location-based application without the need to have hardware components in early research

phases. We built a train simulator and tested it against a railway control system. This simulator achieved good results in simulating the

behavior of a moving train using different testing scenarios.

Keywords— Internet of things; location-based services; vehicle simulator model; train simulator.

I. INTRODUCTION

Internet of things starts to affect every life aspect and many
applications have been implemented in the past few years that
change people lifestyle. If we categorize the existing devices
into i) connected-devices; where devices has a way to connect
and ii) non-connected devices; where devices has no
connectivity. IoT enables more devices to be transformed from
non-connected into connected world.

The concept is wide-spread to cover not only devices but
also solid objects by injecting the required sensors into these
objects, for example building a system to monitor the railway
bridges to ensure early detection of any bridge damages; this
can be achieved by injecting some sensors in the bridge body
[1]. The basic concept is the same in all IoT applications;
converting things into connected objects that have unique
identifiers and are responsible for sharing information or
executing an action or both [2].

This enables the efficient utilization of these devices and
opens the door for more business applications and better
human-machine interactions. If we picked for example the

location-based services, they enable the location tracking of
different things that can vary from human beings to vehicles.
Therefore we can build different business models around such
information e.g. location-based marketing [3].

Other usages such as asset tracking, geo-fencing [4] have
become essential parts of car security and traffic monitoring.
The concept spread to cover additional areas such as using
business intelligent analysis to identify traffic status using the
collected data from different tracked vehicles and their own
speed in different roads.

To develop business intelligent location-based applications
a need to have vehicle simulators that facilitate the
development of these applications and testing the business
model around the proposed services without the need to invest
in the hardware until a complete and mature model become
clear, this simulator role is essential before building a new LBS
system or altering an existing system to reduce the possibility
of failing to fulfill system specifications and also to optimize
the system performance [5].

Page | 490

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The structure of this paper is as following; in this section
we provide background information of the current location-
based IoT services, in the next section we will describe the
problem definition, after that we will move to discuss the
proposed model for building a location-based simulator, we
will then discuss the methods and experimental results and we
will finish the paper with research conclusion.

II. PROBLEM DEFINITION

The IoT application has become one of the hottest research
areas over the past few years and looking at the location-based
services many applications has been proposed to solve existing
business problems such as asset tracking, geo-fencing, traffic
analysis etc. With more involvement of intelligent analysis of
collected location data a requirement to have location based
simulators that enable the evolvement of these services using
pure software model has become clear.

This can push the creation of more innovative applications
that utilize the data generated by the vehicle simulators. One
example is developing a railway control system using the
location-based services and other services. To simulate such
railway control system a requirement to deploy a hardware
device to communicate with this control system in different
trains to collect the train’s location data. This will not only cost
us a lot in terms of devices and connectivity in the early stages
of the research but it will also slow down the research progress
by the hardware capability constraints. One additional
challenge here is the need to upgrade of firmware in these
devices with each change in the system in particular in the
communication protocol.

All these reasons can point to a clear requirement to
develop a location-based simulator so we can speed up the
research and reduce the time to market in LBS and therefore
reduce the overall solution cost. It also enables the flexibility of
developing the communication protocol, hardware and device
features, etc. The purpose of this research is to develop a
generic customizable location-based simulator model that can
be used in developing location-based services and in particular
for train location tracking.

III. EXISTING SIMULATION MODELS

The existence of many location services in the internet
world such as Google Maps® and the inclusion of these
services in the smart phone world expanded the application
domain of LBS. Different simulators exist to simulate these
services with different level of simulator maturity that varies
from a simple location output to a very advanced street-viewer
simulator as in Google maps street viewer.

If we focus on train simulators as an example, many
simulators have been developed using different concepts, in the
early stages of these simulators, the simulator has to contain the
collection of track geometry and related speed restrictions [6].
Because train simulators are much more complex awareness of
track signaling status is also required, so if we need to build a
train simulator we need to consider having a messaging system
to send the signal details to the simulator to reflect the received
railway signals in its behavior.

Two simulation models are usually used; time and event-
based models, in time-based models; the time is divided into
spaced intervals where movement is evaluated at each interval.
This is near real simulation model and easier for development
but it needs much more computational power which can be
reduced by increasing the time intervals.

While in event-based model, the movement calculations
occur only in pre-defined events (e.g. train leave or arrive to
station) which lead to less computation but inconsistent
movement updates, this ideally fits in timetable or traffic
control applications [6].

Many train simulators exist and can be used to do railway
simulation if we pick one example as Train Operation Model
(TOM) which contains three different type of simulation; Train
Performance Simulators (TPS) which simulate a single train
movement, Train Movement Simulator (TMS) which simulates
the performance of multi-train network and Electric Network
Simulator (ENS) that simulate power flow in the railway
system [7]. This TOM does the simulation in respect to railway
system as a whole not only the train as abstract, another
simulation model called TrainSim which is limited to
calculating the train speed profiles using different speed
calculation methods [8], some more advanced 3D simulators
exist as Open Rail train simulator; which is powerful train
simulator but doesn’t fit the purpose of this research which is
providing simulator for IoT applications [9].

In our research we used the time-based simulation
technique with a configurable time slicing that can be tailored
according to the application nature and we build a model
around this simulation technique that also supports the
bidirectional communications (inbound and outbound) to allow
complete interaction with any LBS system.

IV. BUILDING VESIMULATOR MODEL

In order to build the simulation model many steps are
required; the first step is data collection. Data collection is the
most important step as it collects the data that will be fed into
the simulator so it uses it to simulate the vehicle movement.
The data should be gathered according to the required business
model. In our research we have selected train location data as
our source to build a train simulator. The following steps
describe what we did to develop our location-based simulator:

A. Gathering vehicle location dataset

In this step we have collected the railway location dataset
by using a GPS-enabled device while the train is moving from
the start station to the destination station. The device logs the
location periodically and allows the user to mark certain
location such as starting station, crossing areas, middle stations,
and final station locations manually. To generate the data for
our research we developed an Android® application to get the
train locations and log them into a device local file. Most of
smart phones have already Assisted-GPS (A-GPS) technology
which gives a higher GPS location accuracy by integrating
both mobile network and GPS. The add value from A-GPS is
that it provides a quick location fix and a better coverage
especially inside buildings [10].

Page | 491

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

In Android OS, there is already support for location APIs
that we can use. The main class here is the LocationManager
class which is responsible for returning the current device
location [11]:

LocationManager locationManager = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

After initiating this LocationManager class, we can get the
location by calling getLastKnownLocation() method to get the
location.

Location location = locationManager
.getLastKnownLocation(LocationManager.GPS_PROVIDER);

We can also get the location with each change in device
location by registering the application main class to listen to
these location changes. In the application we have configured
the location updates to be with each 100 meters in distance; this
can be configured according to the business model and the
required location frequency.

locationManager.requestLocationUpdates(

 LocationManager.GPS_PROVIDER,

 10000, // 10 seconds

 100, // 100 meters,

 this); // the listener class

It is important to define this location change sampling
according to our application requirements for example every 50
meters, 100 meters, or 500 meters. In this code we have
configured the location update to be fired every 10 seconds or
100 meters difference from the previous location. With each
device location change the onLocationChanged(Location)
method gets called with the new device location where we need
to implement the location logging logic (in a local device file).

public void onLocationChanged(Location location) {

 double latitude = location.getLatitude();

 double longitude = location.getLongitude();

 float accuracy = location.getAccuracy();

 // logging logic here …

}

To run this Android application, it will need the permission
to access the fine-tuned location of the device as following:

<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />

Table I contains a sample of collected location data
formatted in a table.

TABLE I. SAMPLE OF COLLECTED DATA

Latitude (D) Longitude (D) Accuracy Point type

31.259905 32.300598 30 S

31.259428 32.300255 45

 31.258933 32.299912 30

 31.258492 32.299590 30

 31.257979 32.299246 30

 30.604054 32.300908 30 C

30.603149 32.299878 30

 30.601930 32.298483 45 S

The file as we can see logs the latitude, longitude and
accuracy of each location point, the recorded accuracy is very
important as it describes the pseudo-range of the reported
location, this value depends on many factors such as
atmospheric conditions, and GPS device receiver quality, as we
will see later this value is important and shouldn’t be neglected
in most of location-based applications.

The application logs each point with a tag (S, C or nothing)
by allowing manual marking of the current location position by
either no-mark for normal position and 2 additional mark types
either C or S. In our simulator we used C for railway crossing
location and S for railway stations. All the logged entries by
default are logged without any flag but if the user clicks on
station or crossing buttons in the application, the application
logs the corresponding flag. In our service we didn’t record the
altitude of the location as it is not required in our railway
system but we can also record it in the collected data if
required.

If we are tracing a bus for example the values would be
different as we will map the points into bus stations, traffic
lights (instead of crossings), squares, etc.

B. Manipulating the location datasets

In this step we manipulate the application output data file to
give some meaningful values to the collected data. For instance
we can add friendly name to railway stations, update stations
flag to distinguish between start station, middle station and
final station, add the available number of platforms for each
station, and add the max speed allowed for each crossing.

The following three sample lines show the file format after
adding such information:

31.259905, 32.300598, 30, SS, Railway Station Name, 3

31.241799, 32.298023, 30, C, 40

30.601930, 32.298483, 45, S, Middle Station Name, 2

…

The first line describes the station as start station (SS) with
3 platforms, the second line describes the crossing location
with maximum speed allowance as 40 Km/Hr, and in the third
line we have added middle station name and number of
platforms in this station.

Page | 492

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Again if we are building simulator for other applications
such as bus simulator, the points should always correspond to
our simulation milestones with different meanings:

31.259905, 32.300598, 30, SS, City Central Bus Station, 8

31.241799, 32.298023, 30, C

30.601930, 32.298483, 45, S, Town Centre Bus Station, 2

In the first line we have added the start station name and
number of bus parking slots as 8. In the third line we have
added the station name and number of minutes the bus will
wait there (2 minutes).

C. Building the simulator data model

Building the simulation data model is a challenging step to
ensure that the system is flexible for future changes especially
to add additional relations in the future.

The model is composed from different inter-related tables
where the location table represents the core part and gets
connected to other tables that represent the purpose and the
usage of our simulator. In our railway model the location
dataset is linked to railway data, which is represented by a
railway database table which in turn get connected to the
following tables; stations, crossings, switches, maps,
milestones and events. Milestones represents all the location
points that are collected in that railway, these points are what
the simulator will use to simulate the train movements using
vehicle speed to check-in different points.

In fig. 1 we can see part of the simulation data model that
we used in our railway application, the location table is in the
heart of the application data model and get connected to almost
all major tables in this model, we have created a simple
application to import the collected data into our system model;
during importing the model, the distance between each location
milestone is calculated.

Fig. 1. Part of train simulator data model

The import utility uses the following distance calculation
equation to calculate the distance between any two location
points A and B using (1).

 d = r * Math.acos(Math.cos(Math.toRadians(latitudeA))
*Math.cos(Math.toRadians(latitudeB))

*Math.cos(Math.toRadians(longitudeB) -
Math.toRadians(longitudeA))

+Math.sin(Math.toRadians(latitudeA))
*Math.sin(Math.toRadians(latitudeB))) 

Where “r” is the distance from the center to the surface of
the earth, it is a range not an absolute value because of the
asymmetry of the earth sphere, but in our system calculations
we fixed its value as 6,357 Km which is the effective radius of
the earth at sea-level [12].

In this step we need to supply the simulator with vehicle
data as its unique identifier, maximum speed, acceleration, and
deceleration as basic information to simulate the vehicle
movement. In our train simulator example, the train simulator
needs additional information such as railway, current station,
train direction, etc.

For other simulation cases we will need other type of
information for example in a bus simulator we will need
information such as bus identifier, traffic average wait time,
max speed allowed for some streets, etc.

D. Adding simulator logic

The simulator initial position is set to the start station
position, and then it uses the train speed to calculate the run

Page | 493

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

distance. Once the train runs the milestone distance, the
simulator uses that milestone location as its current location
while communicating its location to the LBS system. The
simulator needs to implement a communication protocol with
the location application. This includes communicating the
simulator location together with the simulator unique identifier.

The logic includes implementing different simulator
scenarios to cover all possible business scenarios, in train
simulator we built different simulation scenarios such as
normal scenario, train broken scenario, split car scenario, etc.

The following train simulation scenarios are built using the
simulation model by providing different configurations and
custom business logic as in Table II:

TABLE II. SOME GENERATED TRAIN SCENARIOS

Scenario Business Logic

Normal scenario No custom logic, the simulator will

move the train from start station to end

station passing through middle stations
and reduce speed at crossings.

Train broken scenario Keep sending same train location at

certain point as train speed equals to

zero (broken start location).

Train detached cars scenario Keep sending same train back location
after train passes the split location

(split start point).

Train exceed max speed

scenario

Exceed train max speed after passing

certain point.

Fig. 2. Simulator inboud/outbound interface

When we execute the simulator we need to feed it up with
essential information as initial location, destination location,
direction, simulation scenario, speed at each point of time, etc.
In our train system the simulator which represents the train will
also receives some control agent commands to control the
simulator behavior (e.g. speed).

To support this feature we have implemented a messaging
queue (using Java Message Service – JMS) where these
commands are sent and the simulator keep listening to this
messaging queue to execute the received commands, this is
important feature to support external control feature of the
simulator as shown in fig. 2.

V. VESIMULATOR MODEL

A. The abstract model

The VeSimulator model is composed of the following main

components; simulator core, data store (database), controller,

interfaces (inbound and outbound) and business logic, fig. 3

shows these different components.

The database contains two main data; the location set and

the basic simulator information as id, max speed, initial

position, status, acceleration and deceleration. The controller

part is responsible for lifecycle management operations such as

start, stop, pause and resume of the simulator; it exposes these

methods for external systems to control the simulator behavior.

The Inbound/outbound connections are the simulator

interfaces with the LBS application, the simulator sends the

agreed information in JSON object format to the LBS

application and receives the agree action JSON object format.

The remaining part in the model is the business logic which is

the application specific business logic. The simulator core is

responsible for retrieving database data, process the simulator

logic and any custom business rules, inbound/outbound

connections and applies controller commands. This controller

component enables the building of a control dashboard to

control the simulator.

Fig. 3. VeSimulator model

B. Simulator speed calculation

As the simulator simulate the movement speed, some points
need to be considered here while calculating the final speed at
any moment including acceleration and deceleration power,
where both are fed to the simulator according to the average
values of our simulator model (e.g. average train acceleration
and deceleration).

Also supplying the maximum allowed speed on different
situations, so for example we have the following speed
limitations; train maximum-allowed speed, crossing speed
limit, curvature speed limit, switch maximum speed, external
speed limit command, etc. and these different speed limitations
may overlap pushing the simulator to pick the minimal allowed
speed at any point [8].

As the simulator is configured to run each n seconds, the
average speed over that period is used to calculate the vehicle
run distance (2) and using this distance the existing location
point is determined and sent as the current vehicle location.
This means the actual point has a rough margin of error that is

Page | 494

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

merely dependent on the frequency of location point sampling
rate.

 run_distance = direction * abs(Vf + V0) * n / 2 

Where “V0“ is the speed at the beginning of n period, “Vf“
is the speed at end of the n period and “direction” is the vehicle
direction either forward=1 or backward=-1.

C. Using the simulator

When we deal with location-based services we have to be
cautious with the location accuracy. The simulator will keep
the accuracy for each location when it communicates it with
the application. We should consider the location accuracy and
latency in conjugation with current object speed. Having a
scenario as we can see in fig. 4; if we have two reported points
P1 and P2, both points have an accuracy reported from the GPS
device [13]. When we calculate the actual distance between
both points we need to consider the worst-case scenario, so for
instance if two running vehicles are facing each other the actual
distance “d” calculated using (3).

 d = abs (P1 – P2) – (P1accuracy + P2accuracy)     

Fig. 4. Total distance between 2 points.

Having IoT location-based applications we need to add one
or two additional parameters to our equation to calculate the
actual distance; the latency and error buffers. Both values could
be configurable and calculated based on the worst-case
scenario as well. For example latency buffer which is added to
compensate the time spent in device connection to the
application, processing time, respond time and execute the
action by the device. We can assume this will take 1 second in
the average, in that case if the movement speed is 100 Km/Hr
the latency is: 100000/3600 = 28 meters. This value represents
the run distance by the moving object in that second using its
current speed; we need to set this value to a value calculated
from the max allowed speed in our business domain to add
more safety to the system (e.g. train system).

The error buffer or safety margin is added to the
calculations as well to increase the safety of the system or we
can combine both in one value. The final equation should looks
like (4).

 d = abs (P1 – P2) – (P1 accuracy + P2 accuracy + latency_buffer +
error_buffer)  

VI. RESULT AND DISCUSSION

We have used VeSimulator to create different train
simulators and using these simulators in railway control
system, we build different test scenarios to test the application
ability to control the train in these different running situations.
The control system is validated by testing it with different test
cases that are constructed using different combination of these
scenarios. The system achieved the required target by
simulating the train different scenarios and responding back to
the railway control system [14].

According to the application nature these scenarios need to
be created with different custom logic inside the simulator
model so we can cover many real simulation tests to test our
application efficiently.

The VeSimulator supports bi-directional interaction so it
sends the location position and receive the response back from
the tested system; this enables the implementation of different
interactive location-based services.

The simulator was tested as an isolated system using the
following aspects; simulator controls (start, stop, pause),
simulator custom logic scenarios (scenario execution at specific
location) and simulator distance against time; all the simulator
test cases passed successfully.

Comparing the VeSimulator features with other existing
simulators such as TOM can identify the following aspects as
shown in table III.

TABLE III. COMPARISON BETWEEN TOM AND VE-SIMULATOR

Aspect VeSimulator TOM

Scope Vehicle location

movement simulator

Whole railway

system simulator

Speed calculations Parameters are

externally fed

Parameters are

calculated according

to the given data

External interface Available N/A

Outbound data Yes Yes

Inbound data Yes No

Configurable Yes Yes

Support business

rules

Yes

No

Application IoT LBS Railway simulation

The simulation model is simple and flexible to be adapted
as we did in adapting it for train simulation, it is also
configurable system so it can be configured in terms of the
selected simulation points distance, simulator accuracy is high
as being generated from actual collected data, the simulator
uses the time based simulation technique to determine the
location and finally data re-calibrations can be done without
impacting the built system model by re-importing the data
again into the model.

VII. CONCLUSION

The location-based simulator is essential part of developing
IoT location-based services; the simulator can improve the

Page | 495

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0089 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

speed in developing different location services especially that
require business intelligent analysis. It is a generic simulator
that can be simply adapted to any LBS applications.

Using the VeSimulator to develop a railway control system
achieved the required bi-directional interaction between the
simulator and the control system and enabled us to evolve the
system to a mature level with less cost and time.

REFERENCES

[1] Ying Sun, “Research on the Railroad Bridge Monitoring Platform Based

on the Internet of Things” in International Journal of Control &
Automations, vol.7, no.1, 2014, pp.401-408.

[2] D. Bandyopadhyay, J. Sen, “Internet of things: Applications and
challenges in technology and standardization” in Wireless Personal
Communications, vol. 58, no. 1, 2011, pp. 49-69.

[3] J. Schiller and A. Voisard, “General aspects of location-based services “
in “Location-Based Services”, Morgan Kaufmann/Elsevier, San
Francisco, CA,USA, 2004, ch. 1, pp. 15-32.

[4] F. Reclus and K. Drouard, "Geofencing for fleet and freight
management" in Intelligent Transport Systems Telecommunications,
ITST, 9th International Conference on, Oct 2009, pp. 353-356.

[5] A. Maria, “Introduction to modeling and simulation” in WSC ’97:
Proceedings of the 29th conference on Winter simulation. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 7–13.

[6] GOODMAN C.J., SIU, L.K. and HO, T.K, “A review of simulation
models for railway systems” in International Conference On
Development in Mass Transit Systems, 1998, pp. 80-85.

[7] Railway System Center, http://www.railsystemscenter.com/. last
retirieved April, 2015.

[8] J. C. Jong and S. Chang, “Algorithms for generating train speed
profiles” in Journal of the Eastern Asia Society for Transportation
Studies, vol.6, 2005, pp.356-371.

[9] Open Rails, http://www.openrails.org/. last retrieved April, 2015.

[10] Manav Singha, Anupam Shukla, “Implementation of location based
services in Android using GPS and web services” in International
Journal of Computer Science Issues, vol. 9, issue 1, no 2, 2012, pp 237-
242.

[11] Location Manager APIs– Android Developer,
http://developer.android.com/reference/android/location/LocationManag
er.html. last retrieved April, 2015.

[12] Witchayangkoon, Boonsap, “Elements of GPS precise point
positioning”, Diss. University of New Brunswick, 2000.

[13] Peter H. Dana, “Global positioning system overview”,
http://www.colorado.edu/geography/gcraft/notes/gps/gps.html. last
retrieved April, 2015.

[14] Mostafa Abdel-Azim, Osama Oransa, “Railway as a thing : new railway
control system in Egypt using IoT” in Science and Information
Conference, London, UK, SAI, 2015, in-press.

Page | 496

	Modeling
	CR-ICIT15165
	CR-ICIT15192
	CR-ICIT15212
	CR-ICIT15217
	CR-ICIT15303
	CR-ICIT15329
	CR-ICIT15414
	CR-ICIT15442
	CR-ICIT15461
	CR-ICIT15482
	CR-ICIT15507
	CR-ICIT15508
	CR-ICIT15570

