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Abstract— With trends computer manufacturers to build computers that have Multicore processors, it becomes necessary to study 

the hardware architecture of this processor and the way of manage data between Cores. All the previous researches were designing 

single cycle processors or pipeline processors by FPGA (Field Programmable Gate Array). This is a first research work on parallel 

processing to design and implement a Multicore processor by FPGA. In this work Multicore processor has two Cores and each Core 

consists of 5-stage pipeline MIPS (Microprocessor without Interlocked Pipeline Stages) RISC (Reduced Instruction Set Computer) 

processor. Separated data cache and instruction cache were added to each Core. MESI (Modified, Exclusive, Shared and Invalid) 

protocol is used to manage cache coherence and memory coherence which support Write-back policy where replacement algorithm is 

not needed. Many programs are tested on this design and the correct results were obtained. The VHDL (Very high speed integrated 

circuit Hardware Description Language) of the complete Multicore processor is implemented by using (Xilinx ISE Design Suite 13.4) 

Software and configured on FPGA Spartan-3AN starter kit and results from the kit were obtained. 

Keywords— Multicore; MIPS; RISC; MESI protocol; VHDL; FPGA. 

I.  I.INTRODUCTION 

Computer pioneers correctly predicted that programmers 
would want unlimited amounts of fast memory. An economical 
solution to that desire is a memory hierarchy, which takes 
advantage of locality and trade-offs in the cost performance of 
memory technologies. The principle of locality says that most 
programs do not access all code or data uniformly. Locality 
occurs in time (temporal locality) and in space (spatial locality) 
[1]. The different levels form what is commonly termed the 
memory hierarchy is a tiered description of how the different 
levels compare to and interact with each other. The different 
levels of the memory hierarchy are managed by different parts 
of the system [2].On modern architectures a main memory 
access may take hundreds of cycles, so there is a real danger 
that a processor may spend much of its time just waiting for the 
memory to respond for requests. To alleviate this problem one 
or more caches are logically situated between the processor and 
the memory [3]. 

To get continuing performance gains of Multicore 
processor, it is requisite to use parallel software. Most parallel 
software relies on the shared-memory programming model in 
which all processors access the same physical address space, 
this cause cache coherency problem. To address the cache 
coherency problem, there are many protocols to deal with this 
[4]. In this paper MESI protocol is used.  

Many previous researches have designed single Core 
(single cycle or pipeline processor) that can execution some 
instruction of MIPS processor [5-10]. In this work all 

instructions are designed with extra (hlt) instruction that could 
be used to stop program execution. 

VHDL is a VHSIC Hardware Description Language. 
VHSIC is an abbreviation for Very High Speed Integrated 
Circuit. It describes the behavior of an electronic circuit or 
system, such as ASICs (Application Specific Integrated 
Circuit) and FPGAs as well as conventional digital circuits. A 
fundamental motivation to use VHDL is that VHDL is a 
standard, technology/vendor independent language, and is 
therefore portable and reusable [11]. VHDL has Feature to 
allow the synthesis of a circuit or system in a programmable 
device. This paper studies the designing and prototyping of a 
complete design of Multicore MPIS RISC processor in VHDL. 
FPGA is a digital integrated circuit that contains configurable 
(programmable) blocks of logic along with configurable 
interconnects between these blocks. Design engineers can 
program such devices to perform a tremendous variety of tasks 
[12]. 

II. CACHE MEMORY PRINCIPLES AND DESIGN 

ELEMENTS 

The cache contains a copy of portions of main memory 
[13]. When the processor attempts to read a word of memory, a 
check is made to determine if the word is in the cache. If so, 
the word is delivered to the processor. If not, a block of main 
memory, consisting of some fixed number of words, is read 
into the cache and then the word is delivered to the processor 
[14]. Each Core in the processor has its own cache and the 
cache lies on the same chip of the processor as shown in Figure 
1. The cache has the following design choices: 
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A. Number of Caches 

The cache has been spliced into instruction cache and data 
cache to avoid structural hazards.  These two caches both exist 
in the CPU (Central Processing Unit), typically as two level 
one (L1) caches. When the processor attempts to fetch an 
instruction from main memory, it first consults the instruction 
L1 cache, and when the processor attempts to fetch data from 
main memory, it first consults the data L1 cache. 

B. Cache Addresses 

The cache memory directly receives physical addresses 
instead of virtual addresses from the MIPS processor, for this 
reason there is no need to include a Memory Management Unit 
(MMU) in this design. 

C. Mapping Function 

Direct mapping is used in this design to map each block of 
main memory into only one possible cache line. Direct 
mapping is picked because there are fewer cache lines than 
main memory blocks. 

D. Write policy 

Write policy is needed for data cache only, because the 
processor will not update the program instruction. Write back 
policy is used in this design to minimize memory writes, where 
a copy of the data is written to data cache by the processor and 
not to main memory. When new data is written to cache, a 
MESI state is change to M (Modified) bits associated with the 
line is set. Then, when a block is replaced, it is written back to 
main memory and MESI state get the new line state. 

E. Cache Size 

For this design, each Core has cache size of 64 bytes, 
organized as 4 lines, each line has 4 words, and each word is 4 
bytes in length. Therefore, main memory address is organized 
as shown in Figure 2. 

 

 

III. CACHE COHERENCY MECHANISMS 

To implement cache coherency protocols in the Multicore 
system and managed the consistency of memory, cache 
coherency mechanism is used. In this work Snooping Based 
Coherency is used as a cache coherency mechanism. It allows 
each cache to monitor the address lines so that to gain access to 
main memory which they have cached. Any activity on cache 
line will trigger message, which will be broadcasted to all the 
caches to update the cache line with the activity. 

IV. CACHE COHERENCE PROTOCOL  

In Multicore systems, coherence must occur inside each 
core and among cores through bus system. For this design 
MESI protocol is chosen. It is one of the mostly used cache 
coherency protocol. Any cache line can be in one of 4 states (2 
bits): 

1) Modified (00): cache line has been modified from the value 
in the main memory. 
2) Exclusive (01): cache line is the same as main memory and 
is the only cached copy. 
3) Shared (10): Same as main memory but copies exist in 
other caches. 
4) Invalid (11): Line data is not valid (as in simple cache). So 
it should not be used. 

A state transition diagram in Figure 3 shows what happens 
to a cache line in a processor as a result of memory accesses 
made by that processor (read hit/miss, write hit/miss). Memory 
accesses made by other processors that result in bus 
transactions observed by this snoopy cache (Mem RD, Mem 
WR, Invalidate) as shown in Figure 4. 

 

 

 

 

V. CACHE CONTROLLER  

Cache controller is used to regulate cache memory. When 
Core wants to access memory location for read or write, it is 
first send address to its cache controller which decides this 
address is exists in tag cache or not. If it is, then no memory 
access is needed, the data is provided to Core directly from its 
cache; if not, then the cache controller fetches several words 
from main memory consecutively to fill the corresponding line 

Figure 2 Address bit field format 

Figure 3 MESI – locally initiated accesses 

 

Figure 4 MESI – remotely initiated accesses 
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in the cache. Data cache controller use two bits for MESI 
protocol while instruction cache controller use one bit (valid or 
not valid only), because instruction cache does not make any 
change to instruction program. Also data cache controller has 
extra control signals to manage write-back that requested from 
bus system when a Core need to access a data that modified in 
another Core's cache, however instruction cache controller does 
not have this signals because there is no write-back in 
instruction cache. The cache controller consists of: 

1) Finite State Machine (FSM): the FSM of data cache differs 

from that of instruction cache because data is accessed for read 

or write while instructions are executed without modification. 

FSM of data cache is shown in Figure 5. 

 

 

 

Write back from system has the priority to execute if read 
or write happen at the same time with system write back. Table 
1 explains FSM work, and table 2 describes the function of 
FSM. 

TABLE I.  DATA CACHE FSM TRUTH TABLE 
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idle (st0) x 0 0 0 xx 1 0 0 0 0 x x 1 00 1 

Write cache 

(st1) 
x 0 1 0 

/= 
00 

1 1 0 0 0 0 x 1 00 1 

Read cache 

(st2) 
1 1 0 0 xx 1 0 1 0 0 x x 1 00 1 

WW 0 (st3) 0 
1 or 

1 
0 00 0 0 1 0 1 x 1 0 00 1 

WW 1 (st4) 0 
1 or 

1 
0 00 0 0 1 0 1 x 1 0 01 1 

WW 2 (st5) 0 
1 or 

1 
0 00 0 0 1 0 1 x 1 0 10 1 

WW 3 (st6) 0 
1 or 

1 
0 00 0 0 1 0 1 x 1 0 11 1 

RW 0 (st7) 0 1 0 0 
/= 
00 

0 1 0 1 0 1 0 0 00 1 

RW 1 (st8) 0 1 0 0 
/= 

00 
0 1 0 1 0 1 0 0 01 1 

RW 2 (st9) 0 1 0 0 
/= 

00 
0 1 0 1 0 1 0 0 10 1 

RW 3 (st10) 0 1 0 0 
/= 
00 

0 1 0 1 0 1 0 0 11 1 

WW 0 (st11) x x x 1 xx 0 0 1 0 1 x 1 0 00 0 

WW 1 (st12) x x x 1 xx 0 0 1 0 1 x 1 0 01 0 

WW 2 (st13) x x x 1 xx 0 0 1 0 1 x 1 0 10 0 

WW 3 (st14) x x x 1 xx 0 0 1 0 1 x 1 0 11 1 

TABLE II.  FUNCTION OF FSM SIGNALS 

Signal 

name 

Sign

al 

valu

e 

Signal effect 

stall 

0 
Main memory is accessed and the whole pipeline is 

stalled. 

1 
Cache memory is accessed and the pipelined registers 

are captured on the next falling edge. 

cachewr 

0 None 

1 
When cache hit occurs, data supplied by the processor 

is written into cache memory. 

cacherd 

0 None 

1 
When cache hit occurs, data is supplied to the 

processor from cache memory. 

memrd 

0  

1 
When cache miss occurs, data is supplied to the cache 

memory from main memory. 

memwr 

0  

1 

When cache miss occurs and dirty bit is set, data block 

which is supplied by cache memory is written into 
main memory. 

Cache_dat

a_src 

0 
The value fed to the cache_data_in input of cache 

memory comes from the processor. 

1 
The value fed to the cache_data_in input of cache 

memory comes from main memory. 

Mem_add

r_src 

0 
The address fed to the amem input of main memory 

comes from the processor. 

1 
The address fed to the amem input of main memory 

equals to (tag & I & 0). 

Rst_dly 
0 

The address fed to the amem input of main memory 

equals to (tag & I & 0). 

1 There is no main memory activity. 

wsel 

00 
The first (least significant) word of memory block is 

selected. 

01 The second word of memory block is selected. 

10 The third word of memory block is selected. 

11 
The fourth (most significant) word of memory block is 

selected. 

wb_done_

out 

0 Cache controller is responding to write back request 

from bus system and Core is stall. 

1 Write back is done by cache controller and Core work 
properly. 

 

FSM of instruction cache is part of FSM data cache that 
does not contain the states performing write actions and write 
back system. Figure 6 shows instruction cache FSM, and table 
3 explains its work. 

 

Figure 5 Data cache FSM 
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TABLE III.  INSTRUCTION CACHE FSM TRUTH TABLE 

state 

inputs outputs 
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idle (st0) x x 1 0 0 0 1 00 

Read cache (st1) 1 1 1 0 1 0 1 00 

Rw 0 (st2) 0 1 0 1 0 1 0 00 

Rw 1 (st3) 0 0 0 1 0 1 0 01 

Rw 2 (st4) 0 0 0 1 0 1 0 10 

Rw3 (st5) 0 0 0 1 0 1 0 11 

 

2) Tag cache: data tag cache contains 26 tag bits, 2 bits for 

MESI protocol for each data cache line. Tag bits are used for 

holding the 26 most significant bits of the address being 

accessed. MESI bits are reset when the machine restarts. 

Instruction tag cache is similar to data tag but does not have 2 

bits for MESI protocol, instead it has 1 bit to indicate the line 

valid or not (valid bit). 

VI. COMPLETE CACHE DESIGN AND MEMORY 

SYSTEM 

For each Core, data cache controller is combined with its 
data cache as shown in Figure 7, while Figure 8 shows 
instruction cache controller that is combined with instruction 
cache. 

 

 

 

Both caches access the main memory that consists of 1 
kilobyte, arranged as 2 segments each one has 512 bytes; one 
segment for data and the other for instruction, each segment 
has 32 blocks, each block consists of 4 words and each word 
contains 4 bytes. Figure 9 shows main memory. 

 

 

Figure 6 Instruction cache FSM 

 

Figure 7 Complete design of data cache 
 

Figure 8 Complete design of instruction cache 
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VII. VHDL TOP- LEVEL IMPLEMENTATION 

Top level of Multicore processor connects two Cores to 
data and instruction memories through bus system as shown in 
Figure 10. Later a test bench is written and used to execute a 
program. 

 

 

VIII. RESULTS  

The test program shown in Figure 11 is stored in main 
memory. This program can be executed as a parallel code to 
get profit of Multicore system.  This program used to find the 
summation of numbers (1 – 10)h plus factorial of number 7. 
The results should be (00001438)h stored in memory location 
(40)h and (00000000)h stored in memory location (44)h . 

 Assembly address discretion machine 

 addi $t0,$0,10 0 $t0 = 10h 20080010 
 addi $t6,$0,0 4 $t6 = 0h 200E0000 

loop: add $t6,$t6,$t0 8 $t6 = $t6 + $t0 01C87020 

 subi $t0,$t0,1 c $t0 = $t0 - 1 2108FFFF 

 bne $t0,$0,loop 10 
if ($t0 != $zero) 

goto loop 
1408FFFD 

 sw $t6,40($0) 14 
mem[$zero + 64] = 
$t6 

AC0E0040 

 addi $t3,$0,7 18 $t3 = 7 200B0007 

 addi $a0,$0,1 1c $a0 = 1 20040001 

loop2: mult $t3,$a0 20 
$hi , low = ($t3 * 

$a0) 
01640018 

 mflo $a0 24 $a0 = $lo 00002012 
 mfhi $a1 28 $a1 = $hi 00002810 

 subi $t3,$t3,1 2c $t3 = $t3 -1 216BFFFF 

 
bne 
$t3,$0,loop2 

30 
if ($t3 != $zero) 
goto loop2 

140BFFFB 

 lw $v0,40($0) 34 
$v0 = mem[$zero + 

64] 
8C020040 

 add $a0,$a0,$v0 38 $a0 = $a0 + $v0 00822020 

 sw $a0,40($0) 3c 
mem[$zero + 64] = 

$a0 
AC040040 

 sw $a1,44($0) 40 
mem[$zero + 68] = 

$a1 
AC050044 

 hlt 44 
stop program 
execution 

F00000000 

 

This program has been executed as a parallel code in 
Multicore processor.  By using VHDL testbench, the right 
results have been gotten as shown in Figure 12 which indicates 
the correctness of the design. When memwrite signal is 1, the 
results are stored in data memory. 

The program shown in Figure 11 is executed in single core 
system and Multicore system to make a comparison in terms of 

Figure 9 Main memory 

 

Figure 10 Multicore processor system 

 

Figure 11 Top level test program 
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performance and speedup between single Core processor and 
Multicore processor as shown in table 4. The CPI (Clock Per 
Instruction) metric is calculated by using equation: 

Program Execution time = Instruction count × CPI × 

Clock period  ………… (1) 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN SINGLE CORE AND 

MULTICORE PROCESSORS 

Processor 
Instruction 

count 

Program 

execution 

time 

No of 

clock 

cycles 

Clock 

period 
CPI Speedup 

Single 

Core 
92 1255 125.5 10 ns 1.36 1 

Multicore 92 865 86.5 10 ns 0.94 1.45 

 
 

This design is configured on Xilinx Spartan-3AN starter kit 
FPGA. To show all results, VGA (Video Graphic Array) 
screen is interfaced with FPGA via a standard high-density 
HD-DB15 female connector VGA display port and driving the 
VGA monitor in 640 by 480 mode. Figure 13 shows results of 
test program on VGA screen. The left column is an assembly 
test program machine code with its locations in instruction 
memory that would the processor fetches it to be execution. 
Drawing in the center is illustration that the Processor is 
connected to data and instruction memories via buses. The 
Right column represents the data memory that would the 

processor uses it to store or load data, results of test program 
are shown in data column with its locations. 

IX. CONCLUSIONS 

VHDL design of Multicore RISC processor has been 
implemented for whole instructions which consist of 49 
instructions. Also hlt instruction was added to stop program 
execution. Each Core was Pipelined to five stages. MESI 
protocol was used to deal with data coherence which represents 
the main problem of Multicore system. On chip cache system 
was added for each Core. Cache system used direct mapping 
function, write back policy. The cache system consists of two 
separated caches; one for data and one for instruction. After all 
system design was completed, various programs simulated and 
results were obtained. It is meaning that design work properly. 
The Xilinx ISE Design Suite 13.4 program is used for design 
synthesis while the Xilinx ISim simulator program is used to 
simulate this design which is then configured on a Xilinx 
Spartan-3AN FPGA starter kit and results from kit were 
obtained. 

 

 

 

 

 

 

 

 

Figure 12 Simulation waveform of test program 
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Figure 13 Results of test program on VGA screen 
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