
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Multicore RISC Processor Implementation by

VHDL for Educational Purposes

Safaa S. Omran and Ali J. Ibada

Department of computer engineering techniques

College of Electrical and Electronic Engineering Techniques

Baghdad, Iraq

omran_safaa@ymail.com , ali.alshukri@yahoo.com

Abstract— With trends computer manufacturers to build computers that have Multicore processors, it becomes necessary to study

the hardware architecture of this processor and the way of manage data between Cores. All the previous researches were designing

single cycle processors or pipeline processors by FPGA (Field Programmable Gate Array). This is a first research work on parallel

processing to design and implement a Multicore processor by FPGA. In this work Multicore processor has two Cores and each Core

consists of 5-stage pipeline MIPS (Microprocessor without Interlocked Pipeline Stages) RISC (Reduced Instruction Set Computer)

processor. Separated data cache and instruction cache were added to each Core. MESI (Modified, Exclusive, Shared and Invalid)

protocol is used to manage cache coherence and memory coherence which support Write-back policy where replacement algorithm is

not needed. Many programs are tested on this design and the correct results were obtained. The VHDL (Very high speed integrated

circuit Hardware Description Language) of the complete Multicore processor is implemented by using (Xilinx ISE Design Suite 13.4)

Software and configured on FPGA Spartan-3AN starter kit and results from the kit were obtained.

Keywords— Multicore; MIPS; RISC; MESI protocol; VHDL; FPGA.

I. I.INTRODUCTION

Computer pioneers correctly predicted that programmers
would want unlimited amounts of fast memory. An economical
solution to that desire is a memory hierarchy, which takes
advantage of locality and trade-offs in the cost performance of
memory technologies. The principle of locality says that most
programs do not access all code or data uniformly. Locality
occurs in time (temporal locality) and in space (spatial locality)
[1]. The different levels form what is commonly termed the
memory hierarchy is a tiered description of how the different
levels compare to and interact with each other. The different
levels of the memory hierarchy are managed by different parts
of the system [2].On modern architectures a main memory
access may take hundreds of cycles, so there is a real danger
that a processor may spend much of its time just waiting for the
memory to respond for requests. To alleviate this problem one
or more caches are logically situated between the processor and
the memory [3].

To get continuing performance gains of Multicore
processor, it is requisite to use parallel software. Most parallel
software relies on the shared-memory programming model in
which all processors access the same physical address space,
this cause cache coherency problem. To address the cache
coherency problem, there are many protocols to deal with this
[4]. In this paper MESI protocol is used.

Many previous researches have designed single Core
(single cycle or pipeline processor) that can execution some
instruction of MIPS processor [5-10]. In this work all

instructions are designed with extra (hlt) instruction that could
be used to stop program execution.

VHDL is a VHSIC Hardware Description Language.
VHSIC is an abbreviation for Very High Speed Integrated
Circuit. It describes the behavior of an electronic circuit or
system, such as ASICs (Application Specific Integrated
Circuit) and FPGAs as well as conventional digital circuits. A
fundamental motivation to use VHDL is that VHDL is a
standard, technology/vendor independent language, and is
therefore portable and reusable [11]. VHDL has Feature to
allow the synthesis of a circuit or system in a programmable
device. This paper studies the designing and prototyping of a
complete design of Multicore MPIS RISC processor in VHDL.
FPGA is a digital integrated circuit that contains configurable
(programmable) blocks of logic along with configurable
interconnects between these blocks. Design engineers can
program such devices to perform a tremendous variety of tasks
[12].

II. CACHE MEMORY PRINCIPLES AND DESIGN

ELEMENTS

The cache contains a copy of portions of main memory
[13]. When the processor attempts to read a word of memory, a
check is made to determine if the word is in the cache. If so,
the word is delivered to the processor. If not, a block of main
memory, consisting of some fixed number of words, is read
into the cache and then the word is delivered to the processor
[14]. Each Core in the processor has its own cache and the
cache lies on the same chip of the processor as shown in Figure
1. The cache has the following design choices:

Page | 476

mailto:omran_safaa@ymail.com
mailto:ali.alshukri@yahoo.com

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

F
ig

u
re

 1
 C

o
m

p
le

te
 d

es
ig

n
 o

f
o
n

e
C

o
re

 w
it

h
 c

ac
h

e
m

em
o

ri
es

Page | 477

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

A. Number of Caches

The cache has been spliced into instruction cache and data
cache to avoid structural hazards. These two caches both exist
in the CPU (Central Processing Unit), typically as two level
one (L1) caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction
L1 cache, and when the processor attempts to fetch data from
main memory, it first consults the data L1 cache.

B. Cache Addresses

The cache memory directly receives physical addresses
instead of virtual addresses from the MIPS processor, for this
reason there is no need to include a Memory Management Unit
(MMU) in this design.

C. Mapping Function

Direct mapping is used in this design to map each block of
main memory into only one possible cache line. Direct
mapping is picked because there are fewer cache lines than
main memory blocks.

D. Write policy

Write policy is needed for data cache only, because the
processor will not update the program instruction. Write back
policy is used in this design to minimize memory writes, where
a copy of the data is written to data cache by the processor and
not to main memory. When new data is written to cache, a
MESI state is change to M (Modified) bits associated with the
line is set. Then, when a block is replaced, it is written back to
main memory and MESI state get the new line state.

E. Cache Size

For this design, each Core has cache size of 64 bytes,
organized as 4 lines, each line has 4 words, and each word is 4
bytes in length. Therefore, main memory address is organized
as shown in Figure 2.

III. CACHE COHERENCY MECHANISMS

To implement cache coherency protocols in the Multicore
system and managed the consistency of memory, cache
coherency mechanism is used. In this work Snooping Based
Coherency is used as a cache coherency mechanism. It allows
each cache to monitor the address lines so that to gain access to
main memory which they have cached. Any activity on cache
line will trigger message, which will be broadcasted to all the
caches to update the cache line with the activity.

IV. CACHE COHERENCE PROTOCOL

In Multicore systems, coherence must occur inside each
core and among cores through bus system. For this design
MESI protocol is chosen. It is one of the mostly used cache
coherency protocol. Any cache line can be in one of 4 states (2
bits):

1) Modified (00): cache line has been modified from the value
in the main memory.
2) Exclusive (01): cache line is the same as main memory and
is the only cached copy.
3) Shared (10): Same as main memory but copies exist in
other caches.
4) Invalid (11): Line data is not valid (as in simple cache). So
it should not be used.

A state transition diagram in Figure 3 shows what happens
to a cache line in a processor as a result of memory accesses
made by that processor (read hit/miss, write hit/miss). Memory
accesses made by other processors that result in bus
transactions observed by this snoopy cache (Mem RD, Mem
WR, Invalidate) as shown in Figure 4.

V. CACHE CONTROLLER

Cache controller is used to regulate cache memory. When
Core wants to access memory location for read or write, it is
first send address to its cache controller which decides this
address is exists in tag cache or not. If it is, then no memory
access is needed, the data is provided to Core directly from its
cache; if not, then the cache controller fetches several words
from main memory consecutively to fill the corresponding line

Figure 2 Address bit field format

Figure 3 MESI – locally initiated accesses

Figure 4 MESI – remotely initiated accesses

Page | 478

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

in the cache. Data cache controller use two bits for MESI
protocol while instruction cache controller use one bit (valid or
not valid only), because instruction cache does not make any
change to instruction program. Also data cache controller has
extra control signals to manage write-back that requested from
bus system when a Core need to access a data that modified in
another Core's cache, however instruction cache controller does
not have this signals because there is no write-back in
instruction cache. The cache controller consists of:

1) Finite State Machine (FSM): the FSM of data cache differs

from that of instruction cache because data is accessed for read

or write while instructions are executed without modification.

FSM of data cache is shown in Figure 5.

Write back from system has the priority to execute if read
or write happen at the same time with system write back. Table
1 explains FSM work, and table 2 describes the function of
FSM.

TABLE I. DATA CACHE FSM TRUTH TABLE

state

inputs outputs

H
it

r
e
a

d

w
r
ite

w
b

_
in

M
E

S
I

sta
ll

c
a

c
h

e
w

r

c
a

c
h

e
r
d

m
e
m

r
d

m
e
m

w
r

C
a

c
h

e_
d

a
ta

_
src

M
e
m

_
a

d
d

r
_

sr
c

R
st_

d
ly

w
sel

w
b

_
d

o
n

e_
o

u
t

idle (st0) x 0 0 0 xx 1 0 0 0 0 x x 1 00 1

Write cache

(st1)
x 0 1 0

/=
00

1 1 0 0 0 0 x 1 00 1

Read cache

(st2)
1 1 0 0 xx 1 0 1 0 0 x x 1 00 1

WW 0 (st3) 0
1 or

1
0 00 0 0 1 0 1 x 1 0 00 1

WW 1 (st4) 0
1 or

1
0 00 0 0 1 0 1 x 1 0 01 1

WW 2 (st5) 0
1 or

1
0 00 0 0 1 0 1 x 1 0 10 1

WW 3 (st6) 0
1 or

1
0 00 0 0 1 0 1 x 1 0 11 1

RW 0 (st7) 0 1 0 0
/=
00

0 1 0 1 0 1 0 0 00 1

RW 1 (st8) 0 1 0 0
/=

00
0 1 0 1 0 1 0 0 01 1

RW 2 (st9) 0 1 0 0
/=

00
0 1 0 1 0 1 0 0 10 1

RW 3 (st10) 0 1 0 0
/=
00

0 1 0 1 0 1 0 0 11 1

WW 0 (st11) x x x 1 xx 0 0 1 0 1 x 1 0 00 0

WW 1 (st12) x x x 1 xx 0 0 1 0 1 x 1 0 01 0

WW 2 (st13) x x x 1 xx 0 0 1 0 1 x 1 0 10 0

WW 3 (st14) x x x 1 xx 0 0 1 0 1 x 1 0 11 1

TABLE II. FUNCTION OF FSM SIGNALS

Signal

name

Sign

al

valu

e

Signal effect

stall

0
Main memory is accessed and the whole pipeline is

stalled.

1
Cache memory is accessed and the pipelined registers

are captured on the next falling edge.

cachewr

0 None

1
When cache hit occurs, data supplied by the processor

is written into cache memory.

cacherd

0 None

1
When cache hit occurs, data is supplied to the

processor from cache memory.

memrd

0

1
When cache miss occurs, data is supplied to the cache

memory from main memory.

memwr

0

1

When cache miss occurs and dirty bit is set, data block

which is supplied by cache memory is written into
main memory.

Cache_dat

a_src

0
The value fed to the cache_data_in input of cache

memory comes from the processor.

1
The value fed to the cache_data_in input of cache

memory comes from main memory.

Mem_add

r_src

0
The address fed to the amem input of main memory

comes from the processor.

1
The address fed to the amem input of main memory

equals to (tag & I & 0).

Rst_dly
0

The address fed to the amem input of main memory

equals to (tag & I & 0).

1 There is no main memory activity.

wsel

00
The first (least significant) word of memory block is

selected.

01 The second word of memory block is selected.

10 The third word of memory block is selected.

11
The fourth (most significant) word of memory block is

selected.

wb_done_

out

0 Cache controller is responding to write back request

from bus system and Core is stall.

1 Write back is done by cache controller and Core work
properly.

FSM of instruction cache is part of FSM data cache that
does not contain the states performing write actions and write
back system. Figure 6 shows instruction cache FSM, and table
3 explains its work.

Figure 5 Data cache FSM

Page | 479

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

TABLE III. INSTRUCTION CACHE FSM TRUTH TABLE

state

inputs outputs

H
it

M
e
m

_
r
d

y

sta
ll

c
a

c
h

e
w

r

c
a

c
h

e
r
d

m
e
m

r
d

R
st_

d
ly

w
sel

idle (st0) x x 1 0 0 0 1 00

Read cache (st1) 1 1 1 0 1 0 1 00

Rw 0 (st2) 0 1 0 1 0 1 0 00

Rw 1 (st3) 0 0 0 1 0 1 0 01

Rw 2 (st4) 0 0 0 1 0 1 0 10

Rw3 (st5) 0 0 0 1 0 1 0 11

2) Tag cache: data tag cache contains 26 tag bits, 2 bits for

MESI protocol for each data cache line. Tag bits are used for

holding the 26 most significant bits of the address being

accessed. MESI bits are reset when the machine restarts.

Instruction tag cache is similar to data tag but does not have 2

bits for MESI protocol, instead it has 1 bit to indicate the line

valid or not (valid bit).

VI. COMPLETE CACHE DESIGN AND MEMORY

SYSTEM

For each Core, data cache controller is combined with its
data cache as shown in Figure 7, while Figure 8 shows
instruction cache controller that is combined with instruction
cache.

Both caches access the main memory that consists of 1
kilobyte, arranged as 2 segments each one has 512 bytes; one
segment for data and the other for instruction, each segment
has 32 blocks, each block consists of 4 words and each word
contains 4 bytes. Figure 9 shows main memory.

Figure 6 Instruction cache FSM

Figure 7 Complete design of data cache

Figure 8 Complete design of instruction cache

Page | 480

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

VII. VHDL TOP- LEVEL IMPLEMENTATION

Top level of Multicore processor connects two Cores to
data and instruction memories through bus system as shown in
Figure 10. Later a test bench is written and used to execute a
program.

VIII. RESULTS

The test program shown in Figure 11 is stored in main
memory. This program can be executed as a parallel code to
get profit of Multicore system. This program used to find the
summation of numbers (1 – 10)h plus factorial of number 7.
The results should be (00001438)h stored in memory location
(40)h and (00000000)h stored in memory location (44)h .

 Assembly address discretion machine

 addi $t0,$0,10 0 $t0 = 10h 20080010
 addi $t6,$0,0 4 $t6 = 0h 200E0000

loop: add $t6,$t6,$t0 8 $t6 = $t6 + $t0 01C87020

 subi $t0,$t0,1 c $t0 = $t0 - 1 2108FFFF

 bne $t0,$0,loop 10
if ($t0 != $zero)

goto loop
1408FFFD

 sw $t6,40($0) 14
mem[$zero + 64] =
$t6

AC0E0040

 addi $t3,$0,7 18 $t3 = 7 200B0007

 addi $a0,$0,1 1c $a0 = 1 20040001

loop2: mult $t3,$a0 20
$hi , low = ($t3 *

$a0)
01640018

 mflo $a0 24 $a0 = $lo 00002012
 mfhi $a1 28 $a1 = $hi 00002810

 subi $t3,$t3,1 2c $t3 = $t3 -1 216BFFFF

bne
$t3,$0,loop2

30
if ($t3 != $zero)
goto loop2

140BFFFB

 lw $v0,40($0) 34
$v0 = mem[$zero +

64]
8C020040

 add $a0,$a0,$v0 38 $a0 = $a0 + $v0 00822020

 sw $a0,40($0) 3c
mem[$zero + 64] =

$a0
AC040040

 sw $a1,44($0) 40
mem[$zero + 68] =

$a1
AC050044

 hlt 44
stop program
execution

F00000000

This program has been executed as a parallel code in
Multicore processor. By using VHDL testbench, the right
results have been gotten as shown in Figure 12 which indicates
the correctness of the design. When memwrite signal is 1, the
results are stored in data memory.

The program shown in Figure 11 is executed in single core
system and Multicore system to make a comparison in terms of

Figure 9 Main memory

Figure 10 Multicore processor system

Figure 11 Top level test program

Page | 481

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

performance and speedup between single Core processor and
Multicore processor as shown in table 4. The CPI (Clock Per
Instruction) metric is calculated by using equation:

Program Execution time = Instruction count × CPI ×

Clock period ………… (1)

TABLE IV. PERFORMANCE COMPARISON BETWEEN SINGLE CORE AND

MULTICORE PROCESSORS

Processor
Instruction

count

Program

execution

time

No of

clock

cycles

Clock

period
CPI Speedup

Single

Core
92 1255 125.5 10 ns 1.36 1

Multicore 92 865 86.5 10 ns 0.94 1.45

This design is configured on Xilinx Spartan-3AN starter kit
FPGA. To show all results, VGA (Video Graphic Array)
screen is interfaced with FPGA via a standard high-density
HD-DB15 female connector VGA display port and driving the
VGA monitor in 640 by 480 mode. Figure 13 shows results of
test program on VGA screen. The left column is an assembly
test program machine code with its locations in instruction
memory that would the processor fetches it to be execution.
Drawing in the center is illustration that the Processor is
connected to data and instruction memories via buses. The
Right column represents the data memory that would the

processor uses it to store or load data, results of test program
are shown in data column with its locations.

IX. CONCLUSIONS

VHDL design of Multicore RISC processor has been
implemented for whole instructions which consist of 49
instructions. Also hlt instruction was added to stop program
execution. Each Core was Pipelined to five stages. MESI
protocol was used to deal with data coherence which represents
the main problem of Multicore system. On chip cache system
was added for each Core. Cache system used direct mapping
function, write back policy. The cache system consists of two
separated caches; one for data and one for instruction. After all
system design was completed, various programs simulated and
results were obtained. It is meaning that design work properly.
The Xilinx ISE Design Suite 13.4 program is used for design
synthesis while the Xilinx ISim simulator program is used to
simulate this design which is then configured on a Xilinx
Spartan-3AN FPGA starter kit and results from kit were
obtained.

Figure 12 Simulation waveform of test program

Page | 482

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0087 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, "Computer Architecture: A
Quantitative Approach", 5th ed., San Francisco, USA: Morgan
Kaufmann, 2012.

[2] D. Page, "A Practical Introduction to Computer Architecture", London,
UK: Springer- Verlag, 2009.

[3] M. Herlihy and N. Shavit, "The Art of Multiprocessor Programming",
Burlington, USA, Morgan Kaufmann, 2008.

[4] S. Dey, and M. S. Nair, "Design and Implementation of a Simple Cache
Simulator in Java to Investigate MESI and MOESI Coherency
Protocols", International Journal of Computer Applications, Vol. 87 –
No.11, 0975 – 8887, 2014.

[5] M. B. I. Reaz, Sh. Islam and M. S. Sulaiman, “A Single Clock Cycle
MIPS RISC Processor Design using VHDL”, IEEE International
Conference on Semiconductor Electronics (ICSE2002), Penang,
Malaysia, PP. 126 – 129, DEC. 2002.

[6] S. P. Katke and G. P. Jain, “Design and Implementation of 5 Stages
Pipelined Architecture in 32 Bit RISC Processor”, International Journal

of Emerging Technology and Advanced Engineering, vol. 2, no. 4, PP.
340-346, Apr. 2012.

[7] V. Robio, “A FPGA Implementation of A MIPS RISC Processor for
Computer Architecture Education”, MSc. thesis, New Mexico State
University, Las Cruses, New Mexico, America, 2004.

[8] B. valli, A. U. Kumar and B. V. Bhaskar, “FPGA Implementation and
Functional Verification of a Pipelined MIPS Processor”, International
Journal Of Computational Engineering Research, Vol. 2, No. 5, PP.
1559-1561, Sep. 2012.

[9] I. Anthony, “VHDL Implementation of Pipelined DLX
Microprocessor”, MSc. Thesis, University Teknologi Malaysia (UTM),
Malaysia, 2008.

[10] H. Mahmood and S. omran, “Pipelined MIPS Processor with Cache
Controller using VHDL Implementation for Educational Purposes”,
International Conference on Electrical Communication, Computer,
Power, and Control Engineering ICECCPCE1, Mosul, Iraq, 2013.

[11] Pedroni V., “circuit design with VHDL”, MIT Press, London, England,
2004.

[12] C. Maxfeild, The Design Warrior’s Guide to FPGAs: Devices, Tools and
Flows, Burlington, USA: Elsevier, 2004.

[13] M. Abd-El-Barr and H. El-Rewini, Fundamentals of Computer
Organization and Architecture, New Jersey, USA: John Wiley & Sons,
2005.

[14] W. Stallings, Computer Organization and Architecture: Designing for
Performance, 8th ed., New Jersey, USA: Pearson Education, 2010.

Figure 13 Results of test program on VGA screen

Page | 483

	Modeling
	CR-ICIT15165
	CR-ICIT15192
	CR-ICIT15212
	CR-ICIT15217
	CR-ICIT15303
	CR-ICIT15329
	CR-ICIT15414
	CR-ICIT15442
	CR-ICIT15461
	CR-ICIT15482
	CR-ICIT15507
	CR-ICIT15508
	CR-ICIT15570

