
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Temporal Data in Enterprise Database Systems

Dušan Petković

University of Applied Sciences

Rosenheim, 83024, Germany

petkovic@fh-rosenheim.de

Abstract—The time is generally a challenging task. All issues in relation to time can be better supported using temporal data models.

More than two-dozen such models have been introduced in time period between 1988 and 1995. After this period, the work on temporal

data has been not so dynamic. The last couple of years brought the new revival of the topic and the emergence of new data models. In

this article we present the final release of temporal data model, which is published as the part of the latest SQL standard. After that we

discuss the differences between the specification and one of its implementations. Finally, we conclude the article with discussion of

properties of this data model and advocate for introduction of the PERIOD data type in one of the future versions of the specification.

Keywords— temporal databases, valid time, transaction time, bitemporal, standardization, SQL standard

I. INTRODUCTION

After many years of hard work, the ISO standardization

committee for SQL has released the final specification for

temporal data. This specification has its roots in several

proposals, which came from different sources. One of the most

important differences to the previous proposals is that the

specification does not build an entirely new part, as planned

before.

The story of temporal data specification for the SQL

standard is very long and rich on twists. In the year 1994, the

ANSI department working on the SQL standard had started the

work on temporal data. (The American National Standards

Institute - ANSI - is the organization that oversees the

development of standards in the United States.) They made a

proposal, which was based upon the work of Richard

Snodgrass and his colleagues. Professor Snodgrass has

previously published a specification of temporal language,

which was an extension of the SQL standard at that time [6].

The language specification, together with other materials has

been published later in a book [7].The American proposal has

not been accepted by the ISO committee due to several

significant insufficiencies [1]. (The International Standard

Organization, ISO, is the international counterpart to ANSI.)

At the same time, the members of the English standardization

committee made another proposal, which was based upon the

work of Nikos Lorentzos [3].

As a reaction to the reject of the American proposal, the

members of the ANSI committee did not agree with the

proposal of their British colleagues, hence none of these

specifications has been accepted at that time. For this reason,

the next SQL standard, SQL:1999, [4] did not contain the

specification of temporal data at all. In the following years,

there were no attempts to solve this problem and to make a

specification for temporal data. There was a deadlock between

members of the ISO committee, and hence, in the year 2001

the SQL standardization committee decided to abandon the

work on temporal data.

In the year 2007, the members of SQL standardization

committee started the work concerning system- versioned

tables. At the same time they made the decision to add the

already existing specification to SQL/Foundations. (The last

SQL standard comprises nine parts, which are not

consecutively numbered. The most important part is the second

one, SQL/Foundations, which comprises the foundations of the

language. For this reason, this part is the most voluminous of

all existing parts.)

In the year 2010, the committee started the work concerning

application-time period tables. The both extensions,

application-time period tables and system-versioned tables,

build the biggest part of the new specification for temporal

data, which has been released in the SQL:2011 standard.

Generally, the new specification inherits a lot of ideas from the

both previous proposals, has however a significantly different

syntax. (A list of all temporal extensions in SQL:2011 can be

found in [2], while all non-temporal extensions are described in

[9].)

This article presents the temporal data model proposed by

the SQL standardization committee. We also discuss the

differences between this specification and the implementation

of temporal data in IBM DB2. The main contribution of this

paper is to show deficiencies of the proposed model and to

present the PERIOD data type, which should be considered in

future specifications.

The rest of this article is organized in the following way:

Section 2 deals with the syntax extensions in relation to

application-time period tables. The new syntax of CREATE

TABLE e.g. ALTER TABLE statement is given, as well as the

syntax extensions in INSERT, DELETE and UPDATE

Page | 276

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

statements. Section 3 describes system-versioned tables.

Section 4 discusses a specification of a new table form (called

bitemporal table), where application-time period data as well as

system-versioned data are combined. Section 5 shows the

implementation of system-versioned, application-time period

and bitemporal tables in IBM DB2. The last section gives

conclusions and discusses future work.

II. APPLICATION-TIME PERIOD TABLES

An application-time period table is a table that contains a

PERIOD clause with a user-defined name for time period. The
SQL:2011 standard restricts such a table so that its rows are
associated with one or more temporal periods. A typical
example of such a problem is an insurance application, where
it is necessary to keep track of insurance information (art of
insurance, annual premium etc.) of a given customer that are
in effect at any given point in time.

An application-time period table contains two additional
columns, one to store the start time of a period associated with
the row and one to store the end time. Values of both columns
are set by the user. Additional syntax is provided for users to
specify primary key/unique constraints to ensure that no two
rows with the same key value have overlapping periods.

Note that application-time period tables are related to a
temporal dimension called valid time. Valid time concerns the
time when an event is true in the real world. For this reason,
this form of time is independent of its storage in a database
and can concern the past, present and future snapshots of the
event. Using timestamps, it is possible to form different
versions of an event. This is the central aspect of a temporal
database realization.

A. Creating Application-Time Period Tables

When creating an application-time period table, two additional

columns must be defined. The former stores start values and

the latter the end values of the corresponding time period. The

both columns must be NOT NULL and their data type can be

either DATE or TIMESTAMP. The interval specified by the

values of these columns is half open, meaning that it contains

the value of the start column but not the value of the end

column. The both columns are specified in the CREATE

TABLE or ALTER TABLE statement, using the PERIOD

clause. This clauses specify names of both columns explicitly

and the implicit rule that start_date<end_date. (The name of

this time period is specified by the user.) Example 1 shows the

creation of an application-time period table.

Example 1

CREATE TABLE a_employees (emp_idVARCHAR(30) NOT NULL,
dept_name VARCHAR (20) NOT NULL,dept_id VARCHAR(30),
start DATE NOT NULL, end DATE NOT NULL,

PERIOD FOR emp_period (start, end), PRIMARY KEY (emp_id,
emp_period WITHOUT OVERLAPS),

 FOREIGN KEY (dept_id, PERIOD emp_period)
 REFERENCES department (dept_id, PERIOD dept_period));

The example above shows two other extensions of the

CREATE TABLE statement in relation to application-time

period tables: The first one is the WITHOUT OVERLAPS

clause. This clause forbids overlapping of time periods for

the same value of non-temporal part of the primary key.

Additionally, the specification of the PERIOD clause in the

FOREIGN KEY option forbids the existence of a row in a

referencing table whose time period is not contained in the

time period of a corresponding referenced table.

B. Retrieving and Modifying Data from Application-Time

Period Tables

The syntax of the INSERT statement for application-time

period tables is identical to the syntax of the same

statement for convenient tables. This means that the start

and end time of the period has to be explicitly specified by

the user. (The both values can be related to the past, present

or future.) Example 2 shows the insertion of a row in the

a_employees table, while Table 1 displays the table’s

content after insertion.

Example 2

INSERT INTO a_employees
(emp_id, dept_name, dept_id, start, end) VALUES
('e1', 'Marketing', 'd1', DATE'2010-01-15', DATE '2011-01-15');

 Table 1: The content of the a_employees table

id name id start End

e1 Market. d1 2010.1.15 2011.1.15

As we already stated, the WITH OVERLAPS clause

forbids overlapping of time periods for the same value of

the non-temporal part of the primary key. For this reason,

the INSERT statement in Example 3 will produce an error.

Example 3

INSERT INTO a_employees
 (emp_id, dept_name, dept_id, start, end) VALUES
('e1', 'Marketing', 'd1', DATE'2010-04-01', DATE '2010-12-31');

The insertion of a row into thea_employees table in

Example 3 will not be executed, because of the existence of

the emp_period integrity rule in the PRIMARY KEY

clause in Example 1. The time period of the row in

Example 3 ('2010-04-01', '2010-12-31') overlaps the time

period of the inserted row ('2010-01-15', '2011-01-15').

The syntax of the UPDATE statement is extended with the

FOR PORTION clause to support temporal data. This

clause is used to specify the time period for which the

Page | 277

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

modification in the UPDATE statement is applied.

Example 4 shows the use of this clause and Table 2

displays the content of the table after modification.

Example 4

UPDATE a_employees FOR PORTION OF emp_period
FROM DATE '2010-05-01' TO DATE '2010-08-01'
 SET dept_id = 'd2' WHERE emp_id = 'e1';

 Table 2: Content of a_employees after modification

The time period specified in the FOR PORTION clause in

Example 4 divides the time period of the already inserted

row in two parts. For this reason after the execution of the

UPDATE statement the table will contain two new inserted

rows and the previous row, with the modified time period

The DELETE statement can be used with its convenient

syntax or with the same extension as the UPDATE

statement. In Example 5, the FOR PORTION clause

specifies the time period, for which the deletion is applied.

Example 5

DELETE FROM a_employees FOR PORTION OF emp_period
FROM DATE '2010-06-01' TO DATE '2011-01-01';

Table 3: The result of DELETE in Example 5

The DELETE statement in Example 5 concerns the time

periods of the second and third row in Table 2: For this

reason, these two time periods will be “shortened”

according to the specified period('2010-06-01', '2011-01-

01'). Table 3 shows the content of the table after execution

of the DELETE statement.

III. SYSTEM-VERSIONED TABLES

System-versioned tables are intended to solve real world

problems, where the history of data modifications must be

maintained. The structure of system-versioned tables is

extended with two new columns that contains begin and the

end of the specified time period. The values of these

columns contain system times, which are updated each

time the table content is modified.

System-versioned tables are related to a temporal

dimension called transaction time. Transaction time

concerns the time the fact was present in the database as

stored data. In other words, the transaction time of an event

describes the times, where the event is stored in a database

and presents the correct image of the modelled world.

Timestamps of transaction time events are defined

according to the schedule adopted by the operating system.

Therefore, we can build the history of all such timestamps

in relation to the past and current time, but not in relation to

future. For this reason, system-versioned tables contain

system times, which are updated each time the table

content is modified.

A. Creating System-Versioned Tables

The names of the two new columns described above are

specified by the user, but their values are inserted by the

system. The syntax of the CREATE TABLE statement

contains several new extensions, which can be seen in

Example 6

Example 6

CREATE TABLE s_employees
(emp_nameVARCHAR(50) NOT NULL,
dept_id VARCHAR(10), system_start
TIMESTAMP(12) GENERATED ALWAYS AS ROW START,
system_end TIMESTAMP(12)
 GENERATED ALWAYS AS ROW END, PERIOD FOR
 SYSTEM_TIME (system_start, system_end), PRIMARY KEY
(emp_name)) WITH SYSTEM VERSIONING;

The new clauses in CREATE TABLE statement in relation

to system-versioned tables are:

- GENERATED ALWAYS AS ROW START

- GENERATED ALWAYS AS ROW END

The former clause specifies begin of the time period, while

the latter defines the end of that period. Therefore, the

column system_start in Example 6 stores values in relation

to begin of the system time period and the column

system_end the values of the end of it. The PERIOD FOR

SYSTEM TIME clause contains the names of both

columns and the given order of them implies the rule that

the value of the first column must be always earlier than

that of the second one. The last option, WITH SYSTEM

VERSIONING, inserts implicitly the start time values to

the corresponding values of the column, which build the

primary key. The reason for this is that in a case of system-

versioned tables, the values of a non-temporal column,

which builds the primary key, are not unique, because

several versions of such a column can exist. An instance of

temporal entity must have a primary key composed of

time-varying and non-time-varying attributes. Therefore,

the values of activation start time are used as the part of the

primary key.

The most important attitude of system-versioned tables is

that old versions of an instance are preserved. In spite of it,

Id Dept Start End

e1 Marketing 10.1.15 10.05.1

e1 Marketing 10.5.1 10.08.01

e1 Marketing 10.8.1 11.01.15

Emp Dept Start End

e1 d1 2010.1.15 2010.5.01

e1 d2 2010.5.01 2010.6.01

e1 d1 2011.1.01 2011.1.15

Page | 278

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

the current instance (one which contains the current time)

and those with previous (historical) times are treated

differently: The former is called current system row and

only that one will be modified with update operations. The

old versions of the same table are called historical rows and

they are read-only. Note, that already specified constraints

are valid only for the current row(s).

B. Retrieving and Modifying Data from System-Versioned

Tables

The syntax of the INSERT statement for system-versioned

tables is identical to the syntax of the same statement for

convenient tables. The values of both system time columns

are implicitly inserted by the system. If a new row is

inserted in the system-versioned table, the current time is

assigned to the column with the start time, while the

highest possibly timestamp is inserted into the column with

the end time. Example 7 uses the INSERT statement to add

a new row to the s_employees table, while Table 4 displays

the content of the table after insertion. Note that although

the time-variant columns of the s_employees table are

defined using the TIMESTAMP data type, only the DATE

portion of them will be shown in results, because of

simplicity. (The assumed current time for this example is

2012.08.01.)

Example 7

INSERT INTO s_employees (emp_name, dept_id)
 VALUES ('Scott', 'd1');
 Table 4: The content of s_employees after insertion

id emp_name sys_start sys_end

d1 Scott 2012.8.1 9999.12.31

Concerning the UPDATE statement, the columns with the

start and end time cannot be used explicitly in the SET

clause of that statement. When a row of the system-

versioned table is modified, the old version of that row is

preserved, before the column values are modified and the

current version is inserted. At the same time, the end time

of the old version and the begin time of the new one will be

set to the current (transaction) time. (The DELETE

statement has the same semantics as the UPDATE

statement.)

The modification of the s_employees table is shown in

Example 8, while Table 5 displays the content of that table

after update. Note that the “deleted” rows still belong to the

content of the table. Only their activation end time will be

set to the current time. (The current of execution the

UPDATE statement time is 2012.08.08.)

Example 8

UPDATE s_employees
 SET dept_id = 'd2'
WHERE emp_name = 'Scott' ;

Table 5: The content of the employee table after update

dept_id name sys_start sys_end

d1 Scott 2012.08.01 2012.08.08

d2 Scott 2012.08.08 9999.12.31

The syntax of the SELECT statement in relation to system-

versioned tables is the same as for the regular tables. The

only difference is the necessity to retrieve old versions of

rows. This can be done using the FOR SYSTEM_TIME

clause. The meaning of this clause is to deliver rows, which

satisfy the given condition. The resulting rows can be

current or old version rows, depending on the condition.

There are four different forms of this clause:

- FOR SYSTEM_TIME AS OF CURRENT

 TIMESTAMP

- FOR SYSTEM_TIME AS OF

 <datetime value expression>

- FOR SYSTEM_TIME BETWEEN

 < date value expr 1> AND< date value expr 2>

- FOR SYSTEM_TIME FROM

< date value expr 1> TO< date value expr 2>

The first form of the clause is the default value. This means

that if a query includes any explicit form of the FOR

SYSTEM_TIME clause, this form is implicitly assumed

and the query returns the current rows as the result. The

second form of the clause is used to retrieve rows of a table

at a specified point in time. In contrast to the second form

of the FOR SYSTEM_TIME clause, the third and the

fourth form specify the condition as a time period. (The

former defines a closed interval, while the latter specifies a

half open interval.) Examples 9 and 10 show second and

the third form of the FOR SYSTEM_TIME clause,

respectively.

Example 9

SELECT dept_name
 FROM s_employees FOR SYSTEM_TIME AS OF DATE
'2010-01-01' WHERE emp_name = ˊScottˊ;

Example 10

SELECT dept_name
FROM s_employees FOR SYSTEM_TIME BETWEEN DATE
'2010-01-01' AND DATE '2012-01-01'
WHERE emp_name = 'Scott';

IV. BITEMPORAL TABLES

A bitemporal table comprises both an application-time period

table as well as a system-versioned table. To understand why

the “marriage” of both table forms is useful in the real world,

let us take a look at an example. During their existence,

departments of a firm can change their names. Typically, the

Page | 279

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

modification of a department name happens at a specific time,

but that name is changed in the database not at the same time

(usually later). In that case, the system-time period

automatically records when a particular name is inserted into

the database and the application time period records when the

name was actually modified.

A. Creating Bitemporal Tables

When creating a bitemporal table, four additional temporal

columns must be specified, two concerning system times and

two in relation to application-time period. Example 11 shows

the creation of such a table. (The CREATE TABLE statement

in Example 11 is just a union of columns and clauses from

Example 1 and Example 6.)

Example11

CREATE TABLE bi_employees (emp_id VARCHAR(30) NOT NULL,
dept_name VARCHAR (20) NOT NULL, dept_id VARCHAR(30),
start DATE NOT NULL, end DATE NOT NULL,
system_start DATE NOT NULL
GENERATED ALWAYS AS ROW START,
 system_end DATE NOT NULL GENERATED ALWAYS AS ROW
END, PERIOD FOR SYSTEM_TIME (system_start, system_end),
 PERIOD FOR emp_period (start, end),
PRIMARY KEY (emp_id, emp_period WITHOUT OVERLAPS)))
 WITH SYSTEM VERSIONING;

Because bitemporal tables combine properties of both forms

of temporal tables, all DML statements (SELECT, INSERT,

UPDATE and DELETE) can be used either for the

application-time period, system-time period or the

combination or both. In other words, there are no syntactic

extensions which are specific for bitemporal tables.

V. IMPLEMENTATION OF TEMPORAL DATA IN

IBM DB2

Several vendors of RDBMSs have already implemented

temporal data. Some of them used the prerelease of the

specification for implementation, while others used

proprietary syntax and semantics. At this moment, there is

only one vendor, who implemented the specification of

temporal data from the SQL standard: IBM DB2. For this

reason, we will describe the support of temporal data in IBM

DB2 in this section.

A. Tables with Business Time

The implementation of application-time period tables in DB2

is similar to the corresponding specification in SQL:2011: The

main difference is in the terminology: In DB2, such tables are

called tables with business time [5].

1) Creating Tables with Business Time

The syntax of the CREATE TABLE statement for creation of

tables with business time is slightly different to the

corresponding syntax for creation of application-time period

tables. Example 12 shows how the CREATE TABLE

statement can be used to create tables with business time.

Example 12

CREATE TABLE a_employees (emp_idVARCHAR(30) NOT NULL,
dept_name VARCHAR (20) NOT NULL,dept_id VARCHAR(30),
start DATE NOT NULL, end DATE NOT NULL,
 PERIOD BUSINESS_TIME (start, end),
 PRIMARY KEY (emp_id, BUSINESS_TIME WITHOUT
OVERLAPS));

The only difference to the corresponding SQL:2011

specification is that IBM DB2 does not allow users to define

names for the specified time period (in the PERIOD clause).

This is replaced by the BUSINESS_TIME reserved keyword.

2) Modifying Data from Tables with Business Time

The syntax of the INSERT statement in DB2 is identical to the

syntax of the same statement in the SQL:2011 specification,

while the syntax of the UPDATE and DELETE statements in

DB2 is slightly different: The FOR PORTION clause contains

the BUSINESS_TIME reserved word, instead of the user-

defined name. (This is an implication from the definition of

the PERIOD clause in the CREATE TABLE statement in

DB2.) Example 13 shows the use of the UPDATE statement to

modify tables with business time, while deletion of rows is

given in Example 14. (These two examples correspond to

Examples 4 and 5. For this reason, the result of these two

statements is given in Table 2 and Table 3, respectively.)

Example 13

UPDATE a_employees FOR PORTION OF BUSINESS_TIME
 FROM DATE '2010-05-01' TO DATE '2010-08-01'
 SET dept_id = 'd2' WHERE emp_id = 'e1';

Example 14

DELETE FROM a_employees
 FOR PORTION OF BUSINESS_TIME
 FROM DATE '2010-06-01' TO DATE '2011-01-01';

B. Tables with System Times

The semantics of system-versioned tables in DB2 is different

than the semantics of the corresponding specification in

SQL:2011. Instead of one system-versioning table, DB2

supports two tables, one to store current rows and one to store

old versions of them. Besides that, the terminology is

different: System-versioning tables are called tables with

system time.

There are three steps in defining tables with system time:

- Create the base table (for current rows)

- Create the versioning table (for old versions of rows)

Page | 280

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

- Alter the base table to enable versioning and identify the

versioning table

1) Creating Tables with System Time

The syntax of the CREATE TABLE statement for creating

base tables with business time is almost identical to the

corresponding syntax for creation of system-versioning tables.

Example 15 shows how the CREATE TABLE statement can

be used to create a base table with system time.

Example 15

CREATE TABLE s_employees (emp_nameVARCHAR(50) NOT
NULL, dept_id VARCHAR(10),
system_start TIMESTAMP(12) GENERATED ALWAYS AS ROW
BEGIN NOT NULL,
system_end TIMESTAMP(12) GENERATED ALWAYS AS ROW
END NOT NULL,
trans_start TIMESTAMP(12) GENERATED ALWAYS AS
TRANSACTION START,
 PERIOD SYSTEM_TIME (system_start, system_end),
 PRIMARY KEY (emp_name));

The only difference to the corresponding syntax in the

SQL:2011 specification is the existence of an additional

column (in our example trans_start), which stores transaction

start time. IBM DB2 uses the values stored in this column to

track when the transaction first executed a statement that

modifies the content of the table. Examples 16 and 17 show

the second and third step in defining tables with system time.

Example 16

CREATE TABLE v_employees LIKE s_employees;

Example 17

ALTER TABLE s_employees ADD VERSIONING USE HISTORY
TABLE v_employees;

The CREATE TABLE statement in Example 16 creates the

new table called v_employees, which has the same structure

as the s_employees table and is used to store old versions of

rows. Example 17 modifies the structure of the base table to

enable it for versioning and to identify the versioning table.

2) Modifying Data from Tables with System Time

The INSERT statement for tables with system time has the

same syntax and semantics as the corresponding statement for

system-versioning tables. IBM DB2 supports the same syntax

for the UPDATE and DELETE statements as SQL:2011, but

the semantics of these operations is different: The

modification of a row using the UPDATE statement is

maintained so that the new version of the row is placed in the

base table and the corresponding old version in the versioning

table. Similarly, during deletion, the data from the base table is

deleted and copied in the corresponding versioning table. The

system sets the end time of the deleted data in the versioning

table to the transaction start time of the DELETE statement.

VI. EVALUATION AND CONCLUSIONS

All temporal data models can be evaluated in relation to

several concepts. In this article, we will evaluate the temporal

data model introduced in the SQL:2011 specification in

relation to the three most important concepts:

- Time dimensions

- Implicit vs. explicit timestamps

- Grouping of time-varying attributes

A. Time Dimensions

The most important concept of temporal data models is time

dimension, and there are three different forms of it: valid time,

transaction time and bitemporal. Valid time concerns the time

when a fact is true in the real world. For this reason, this form

of time is independent of its storage in a database and can

concern the past, present and future snapshots of the fact.

Transaction time concerns the time the event was present in

the database as stored data. The transaction time of an event

describes the times, where the event is stored in a database and

presents the correct image of the modelled world. Timestamps

of transaction time events are defined according to the

schedule adopted by the operating system. Therefore, we can

build the history of all such timestamps in relation to the past

and current time, but not in relation to future. Additionally,

only the current values may be updated, and the updates

cannot be retroactive.

The union of both forms explained above is called

bitemporal.(There is also a special case of bitemporal model,

when the valid and transaction times of a fact are identical. As

a simple example for this case, the situation where a fact is

recorded as soon as it becomes valid in reality can be

considered.) The most temporal data models proposed in the

literature support only valid time. The specification of

temporal data in SQL:2011 supports all three dimensions.

B. Implicit vs. explicit timestamps

The difference between implicit and explicit timestamps

concerns how the association of times is represented. In case

of explicit timestamps this association is represented by fully

explicit timestamp attributes. This issue has consequences in

relation to update languages in the following way: While

transaction times of facts are supplied by the system itself,

update operations in transaction-time models treat the

temporal aspect of facts implicitly. On the other hand, the user

is responsible to supply valid times of facts. Therefore,

updating facts in valid time and bitemporal data models

generally must treat time explicitly and are forced to represent

a choice as to how the valid times of facts should be specified

by the user. The SQL:2011 specification supports explicit and

Page | 281

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0057 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

implicit timestamps in the way described above: In the case of

valid time (in application-time period tables), the user is in

charge of supplying values for begin and end of the particular

time period. The values of transaction time periods in system-

versioned tables are automatically set by the system.

C. Grouping of Time-Variant Attributes

Temporal data models support two different approaches in

relation how time-variant attributes are attached: tuple time

stamping and attribute time stamping. In tuple time stamping,

each tuple is augmented by one or two attributes for the

recording of timestamps. One additional attribute can be used

to record either the time point at which the tuple becomes

valid or the time at which the data is valid. Two additional

attributes are used to record the start and end time points of

the corresponding time interval of validity of the

corresponding data. Tuple time stamping is usually applied in

temporal relational data models, meaning that the first normal

form (1NF) has to be maintained.

The second approach, attribute time stamping, means that the

time is associated with every attribute which is time-varying.

Therefore, a history is formed for each time-varying attribute

within each tuple. As a result, the degree of the relation is

reduced by one or two compared with the tuple time stamping,

since timestamps are part of the attribute values. Values in a

tuple which are not affected by a modification do not have to

be repeated. So, the history of values is stored separately for

each attribute.

Each of the two approaches has benefits and disadvantages.

Tuple time stamping, which implies 1NF may introduce

redundancy because attribute values that change at different

times are repeated in multiple tuples. On the other hand,

temporal relational models can use only this approach. The

attribute time stamping overcomes the disadvantage of data

redundancy introduced when applying tuple time stamping,

but it cannot directly use existing relational storage structures

or query evaluation techniques that depend on atomic attribute

values. The specification of temporal data in SQL:2011 uses

tuple time stamping, because SQL is the language for

relational database systems.

D. Deficiencies of the Specification

The main deficiency of the standardized specification for

temporal data is the omission to support the PERIOD data

type. A period can be defined as a duration that represents a

set of contiguous time units within the duration. It has a

beginning and ending bound. The both are defined by the

value of two elements: a beginning element and an ending

element. Beginning and ending elements can be DATE,

TIME, or TIMESTAMP types, but both must be of the same

type. The main advantage of the PERIOD data type is that it

is naturally (and very easy) to define operations on such a data

type. For instance, the following operations are concerned as

operations on time periods: CONTAINS, EQUALS,

PRECEDES, SUCCEEDS and OVERLAPS.

There are several other deficiencies, which are listed below:

- Coalescing is not supported

- Temporal joins are not supported

- Multiple application-time periods per table are not supported

Coalescing is similar operation to the elimination of duplicates

in conventional databases. The aim of coalescing is to merge

bring together tuples with identical attribute values and with

timestamps, which are adjacent in tine, or share some time

periods in common. Temporal join means that a row from one

table is joined with a row from another table such that their

application-time or system-time periods satisfy a condition.

(The notion of multiple application-time periods is obvious

per se.)

REFERENCES

[1] Darwen, H.; Date, C.J. - An overview and Analysis of
Proposals Based on the TSQL2 Approach, in Date on
Database: Writings 2000-2006, C.J. Date, Apress, 2006.

[2] Kulkarni, K. - Temporal Features in SQL Standard, in
http://metadata-standards.org/Document-
library/Documents-by-number, 2012

[3] Lorentzos, N. - The Interval-extended Relational Model
and Its Applications to Valid-time Databases, in Temporal
Databases, 1993

[4] Melton, J. - SQL:1999, Understanding Relational
Language Components, Morgan-Kaufman, 2001

[5] Saracco, C.M.; Nicola, M.; Gandhi, L. - A matter of time:
Temporal data management in DB2, in
www.ibm.com/developerworks/data/library/techarticle/dm
-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf,
2012

[6] Snodgrass, R.T. et al . - TSQL2 Language Specification, in
SIGMOD Record 23(1), 1994.

[7] Snodgrass, R.T. - The TSQL2 Temporal Query Language,
Springer Verlag, 1995.

[8] SQL:2001 Standard - ISO/IEC 9075-2:2011, Information
technology – Database languages – SQL – Part 2:
Foundation (SQL/Foundation), 2011.

[9] Zemke, F. - What’s New in SQL:2011, SIGMOD Record,
2012.

Page | 282

http://metadata-standards.org/Document-library/Documents-by-number
http://metadata-standards.org/Document-library/Documents-by-number
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf

	Database
	CR-ICIT15205
	CR-ICIT15222
	CR-ICIT15266
	CR-ICIT15270
	CR-ICIT15276
	CR-ICIT15543

