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Abstract— In the past Groebner bases have been proved to be a very potent tool to solve a variety of problems first of all in 

mathematics but also in science and engineering. Hence, it is near at hand to study application of Groebner bases in coding, i.e. the 

encoding and especially the decoding of linear error correcting codes. This paper attempts an overview focusing on Reed-Solomon codes 

and Goppa codes together with their coding and decoding algorithms. 
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I.  INTRODUCTION  

A Groebner basis (according to Bruno Buchberger, 1965) 
or a standard basis (according to Heisuke Hironaka, 1964) is a 
finite generating set of an ideal 𝐼 in the polynomial ring 𝑅 =
𝐾[𝑥1, … , 𝑥𝑛] over a field 𝐾. For any such ideal the (reduced) 
Groebner basis is unique and can be determined 
algorithmically. This basis allows solving some prominent 
mathematical problems, e.g. to decide whether some 
polynomial belongs to 𝐼 or not, whether two ideals are 
identical, whether two varieties are identical or not etc. In his 
seminal thesis [5] Buchberger developed the theory and 
presented the necessary algorithms. He also investigated 
applications [7] of Groebner bases like solving systems of 
multivariate polynomial equations.  

In the eighties the rapid development of computers spurred 
further investigation of Groebner bases which resulted in 
improvements of the algorithms and even more 
applications [7]. Especially Computer Algebra Systems 
benefitted [9] from Groebner bases. But Groebner bases also 
brought forth progress in coding and cryptography.  

II. GROEBNER BASES  

A. Definitions [11]  

Let 𝐼 be some ideal in 𝑅 =  𝐾[𝑥1, … , 𝑥𝑛]. Then by Hilberts 
basis theorem, I is finitely generated, i.e. 𝐼 =  〈𝑓1, … 𝑓𝑠〉. Now 
fix some monomial order on the monomials in R to be able to 
specify leading monomials 𝐿𝑀(𝑓), leading terms 𝐿𝑇(𝑓) and 
leading coefficients 𝐿𝐶(𝑓) for any 𝑓 in 𝑅. Then a Groebner 
basis G for 𝐼 is a set 𝐺 = {𝑔1, … , 𝑔𝑡} with 𝐼 = 〈𝐺〉 so that the 
ideal generated by the leading terms of the elements in 𝐼 is 
generated by the leading terms 𝐿𝑇(𝑔) for 𝑔 in 𝐺, i.e. 
〈𝐿𝑇(𝑔1), … , 𝐿𝑇(𝑔𝑡)〉 = 〈𝐿𝑇(𝐼)〉. Equivalently, 𝐺 =
 {𝑔1, … , 𝑔𝑡} is a Groebner basis if and only if 𝐿𝑇(𝑓) is divisible 
by one of the 𝐿𝑇(𝑔𝑖) for any 𝑓 in 𝐼. By the way, 𝐺 then has the 
minimality properties of a proper ideal basis. Furthermore, 𝐺 is 

unique, and any 𝑓 in 𝑅 can be written as 𝑓 = 𝑔 + 𝑟 for unique 
polynomials 𝑔 and 𝑟 with 𝑔 in 𝐼 and no term of 𝑟 is divisible 
by any element of 𝐿𝑇(𝑔𝑖).  

B. Algorithms [11]  

Buchberger’s algorithm computes a (not reduced) Groebner 
basis for an ideal 𝐼 = 〈𝑓1, … 𝑓𝑠〉.using sysygy- or S-polynomials 

𝑆(𝑓, 𝑔) =
𝐿𝐶𝑀(𝐿𝑀(𝑓),𝐿𝑀(𝑔))

𝐿𝑇(𝑓)
𝑓 − 

𝐿𝐶𝑀(𝐿𝑀(𝑓),𝐿𝑀(𝑔))

𝐿𝑇(𝑔)
𝑔 for any two 

polynomials 𝑓 and 𝑔 in 𝑅 together with a generalization of the 
polynomial division algorithm for polynomials in one variable 
to the case of multivariate polynomials 𝑓, 𝑓1, … , 𝑓𝑠, 𝑟 in 𝑅 such 
that 𝑓 = 𝑎1𝑓1 +⋯+ 𝑎𝑠𝑓𝑠 + 𝑟 where the remainder 𝑟 =
𝑓̅{𝑓1,…,𝑓𝑠} is zero or a 𝐾-linear combination of monomials none 
of which is divisible by any 𝐿𝑇(𝑓1), … , 𝐿𝑇(𝑓𝑠) – all in the usual 
notation of [11][21] et al. With these definitions Buchberger’s 
algorithm can now be specified. 

 

Code snippet 1. Computation of 𝐺 with 〈𝐺〉 = 〈𝐹〉  

Obviously, this very simple version of Buchberger’s 
algorithm extends the given set 𝐹 to 𝐺. A reduction step 
removes superfluous elements from G resulting in the unique 
reduced Groebner basis of 𝐼. There are improved versions [11] 
to compute the unique, reduced Groebner basis of 𝐼 efficiently.  

input: 𝐹 = (𝑓1, … , 𝑓𝑠) ⊂  𝐾[𝑥1, … , 𝑥𝑛]  
output: 𝐺 = (𝑔1, … , 𝑔𝑡) with 〈𝐹〉 = 〈𝐺〉  
repeat  

𝐺′ ≔ 𝐺  

for each {𝑝, 𝑞} ⊂ 𝐺′, 𝑝 ≠ 𝑞 do  

𝑆 ∶= 𝑆(𝑝, 𝑞)̅̅ ̅̅ ̅̅ ̅̅ ̅𝐺   

if 𝑆 ≠ 0 then 𝐺 ∶= 𝐺 ∪ {𝑆}  
until 𝐺 = 𝐺′  
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C. Applications [11]  

First, one should note that the concept of Groebner bases 
generalizes both Euclid’s algorithm to compute the greatest 
common divisor, gcd, of two polynomials as well as Gauß’s 
algorithm to solve a system of linear equations.  

Euclids algorithm  

 

Code snippet 2. ℎ = 𝑔𝑐𝑑(𝑓, 𝑔) for any 𝑓, 𝑔 ∈ 𝐾[𝑥]  

Regard each equation of a system of linear equations in the 
unknowns 𝑥1, … , 𝑥𝑛 as a linear polynomial 𝑓𝑖 in 𝐾[𝑥1, … , 𝑥𝑛]. 
Then, the reduced Groebner basis 𝐺 = {𝑔1, … , 𝑔𝑡} of 𝐼 =
 〈𝑓1, … , 𝑓𝑛〉 consists of linear, non-zero polynomials whose 
coefficients correspond to the non-zero rows in the reduced 
echelon form of the coefficient matrix of the system of linear 
equations. In this sense, computation of the reduced Groebner 
basis is equivalent to Gauß’s algorithm.  

As one of the very many applications of Groebner bases 
consider the problem to solve a system of multivariate 
polynomial equations 𝑓1 = 𝑓2 = ⋯ = 𝑓𝑠 = 0 for 𝑓𝑖 in 𝑅. Here 
we use 𝐼 =  〈𝑓1, … 𝑓𝑠〉 =  〈𝐺〉  for the reduced Groebner basis 
𝐺 =  {𝑔1, … , 𝑔𝑡} of 𝐼. It turns out that the set of equations 
𝑔1 = 𝑔2 = ⋯ = 𝑔𝑡 = 0 is easier to solve because using the 
lexicographic order (lex), variables are eliminated in that order 
in the Groebner basis so that a process like back substitution 
generates the variety 𝑉(𝐼) = 𝑉(〈𝐺〉) = 𝑉(𝑔1, … , 𝑔𝑡).  
Elimination theory [11] provides the proofs and [20] more 
examples.  

III. ERROR CORRECTING CODES  

Here we consider linear block codes [17] only. An alphabet 
is some finite field 𝔽 = 𝔾𝔽(𝑝𝑚) for prime 𝑝 and 𝑚 ∈ ℕ and 

information words 𝑢 of length 𝑘 are in 𝔽𝑘. Code words over 𝔽 
are of the form 𝑢𝐺 for a 𝑛 × 𝑘 generator matrix 𝐺. Hence the 

code 𝒞 = {𝑢𝐺: 𝑢 ∈ 𝔽𝑘} is a linear subspace of 𝔽𝑛 .  𝒞 can also 
be characterized as the kernel space 𝒞 = {𝑐 ∈ 𝔽𝑛: 𝐻𝑐⊤ = 0} of 
the parity matrix 𝐻, i.e. 𝐻𝐺⊤ = 0. If any two code words have 
a Hamming distance of at least 𝑑 then at most (𝑑 − 1)/2 errors 
in a transmitted code word can be corrected. Such a code is 
called a (linear) [𝑛, 𝑘, 𝑑] code.  

Encoding an information word 𝑢 to 𝑐 = 𝑢𝐺 ∈ 𝒞 is easy 
whereas decoding a corrupted word 𝑦 = 𝑐 + 𝑒 with an error 
vector 𝑒 ∈ 𝔽𝑛 with no more than (𝑑 − 1)/2 non-zero elements 
to the original 𝑐 (and then to the original information word 𝑢) 
is difficult. In fact, it is NP-complete [2]. However, for many 
specific (linear) codes there exist efficient decoding algorithms.  

A. (Generalized) Reed-Solomon Codes  

(Generalized) Reed-Solomon codes, RS and gRS, are an 
important class of codes comprising many other important 

codes. Such code 𝒞𝑔𝑅𝑆 is specified by its 𝑛 distinct non-zero 

code locators 𝛼1, … , 𝛼𝑛 ∈ 𝔽 and 𝑛 column multipliers 
𝑣1, … , 𝑣𝑛 ∈ 𝔽. Then the parity matrix 𝐻𝑔𝑅𝑆 of 𝒞𝑔𝑅𝑆 is defined 

by  

𝐻𝑔𝑅𝑆 = (

𝛼1
𝑜 𝛼2

𝑜 ⋯ 𝛼𝑛
𝑜

𝛼1
1 𝛼2

1 ⋯ 𝛼𝑛
1

⋮ ⋮ ⋱ ⋮
𝛼1
𝑛−𝑘−1 𝛼2

𝑛−𝑘−1 ⋯ 𝛼𝑛
𝑛−𝑘−1

)(

𝑣1   0
 𝑣2   
  ⋱  
0   𝑣𝑛

).  

Then, 𝒞𝑔𝑅𝑆 is a (linear) [𝑛, 𝑘, 𝑑] code with 𝑑 = 𝑛 − 𝑘 + 1. 

(Such codes attain the Singleton bound 𝑑 ≤ 𝑛 − 𝑘 + 1 and are 
called maximum distance separable, MDS codes.) For gRS 
codes there are efficient decoding algorithms: e.g. solving 
linear equations [17], using Euclid’s algorithm [22] or linear 
recurrences in case of the famous Berlekamp-Massey 
algorithm [3][17][18]. List decoding of e.g. (generalized) 
Reed-Solomon codes relaxes the assumption on the number of 
allowed errors and returns a list of possible code words.  

B. Goppa-Codes  

Goppa-codes, alternant gRS codes, play an important role 
e.g. in the McEliece Public Key Crypto System, 
PKCS [18][19]. Let 𝐹 = 𝔾𝔽𝑞 , K = 𝔾𝔽(𝑞𝑚) and 𝐿 =
{𝛼1, … , 𝛼𝑛} ⊂ K be a set of pair wise different code locators 
and let 𝑔(𝑥) ∈ K[𝑥] with 0 ∉ 𝑔(𝐿) be a Goppa-polynomial of 
degree 𝑡. Then  

𝐶𝐺𝑜𝑝𝑝𝑎  =  {(𝑐1, … , 𝑐𝑛) ∈  𝐹
𝑛 : ∑

𝑐𝑖

𝑥−𝛼𝑖

𝑛
𝑖=1  =  0 𝑚𝑜𝑑 𝑔(𝑥)} 

is a linear [𝑛, 𝑘, 𝑑] code over 𝐹. The code 𝐶𝐺𝑜𝑝𝑝𝑎 is called 

irreducible iff the Goppa polynomial 𝑔 is irreducible. Let 

𝑔(𝑥) =  ∑ 𝑔𝑖  𝑥
𝑖𝑡

𝑖=𝑜   be the Goppa polynomial. Then we have 

(best shown by induction in 𝑡, the degree of 𝑔)  
𝑔(𝑥)−𝑔(𝛼)

𝑥−𝛼
 =

 𝑔𝑡 ∑ 𝛼𝑖𝑥𝑡−1−𝑖𝑡−1
𝑖=𝑜 + 𝑔𝑡−1∑ 𝛼𝑖𝑥𝑡−2−𝑖𝑡−2

𝑖=𝑜 +⋯+ 𝑔2(𝑥 + 𝛼) + 𝑔1     

Then, 𝑐 ∈ 𝐶𝐺𝑜𝑝𝑝𝑎 iff  ∑
𝑐𝑖

𝑔(𝛼𝑖)
 
𝑔(𝑥)−𝑔(𝛼)

𝑥−𝛼

𝑛
𝑖=1  =  0 in K[𝑥] and 

by comparison of coefficients 𝑐 ∈ 𝐶𝐺𝑜𝑝𝑝𝑎 iff 𝐻𝑐⊤ = 0 with 

parity matrix   𝐻 =

(

 
 
 

𝑔𝑡

𝑔(𝛼1)
 

𝑔𝑡

𝑔(𝛼2)
⋯

𝑔𝑡

𝑔(𝛼𝑛)

𝑔𝑡−1+𝛼1𝑔𝑡

𝑔(𝛼1)
 

𝑔𝑡−1+𝛼2𝑔𝑡

𝑔(𝛼2)
⋯

𝑔𝑡−1+𝛼𝑛𝑔𝑡

𝑔(𝛼𝑛)

⋮ ⋮ ⋱ ⋮
𝑔1+𝛼1𝑔2

+⋯+𝛼1
𝑡−1 𝑔

𝑡

𝑔(𝛼1)

𝑔1+𝛼2𝑔2
+⋯+𝛼2

𝑡−1 𝑔
𝑡

𝑔(𝛼2)
⋯

𝑔1+𝛼𝑛𝑔2
+⋯+𝛼𝑛

𝑡−1 𝑔
𝑡

𝑔(𝛼𝑛) )

 
 
 

=

𝐶𝑋𝑌 where   

𝐶 = (

𝑔𝑡  0
𝑔𝑡−1 𝑔𝑡

⋯ 0
⋯ 0

⋮ ⋮
𝑔1 𝑔2

⋱ ⋮
⋯ 𝑔𝑡

), 𝑋 = (

𝛼1
𝑜 𝛼2

𝑜 ⋯ 𝛼𝑛
𝑜

𝛼1
1 𝛼1

1 ⋯ 𝛼𝑛
1

⋮ ⋮ ⋱ ⋮
𝛼1
𝑡−1 𝛼2

𝑡−1 ⋯ 𝛼𝑛
𝑡−1

), 

and Y=

(

 
 
 

1

𝑔(𝛼1)
  

 
1

𝑔(𝛼2)

𝟎

𝟎 
⋱  

 
1

𝑔(𝛼𝑛))

 
 
 

.  

Such codes correct up to 
𝑡

2
 errors, even up to 𝑡 errors in the 

binary case, i.e. if 𝐶𝐺𝑜𝑝𝑝𝑎 is a code over 𝔽 = 𝔾𝔽(2).  

in: 𝑓, 𝑔 ∈ 𝐾[𝑥]; out: ℎ = 𝑔𝑐𝑑(𝑓, 𝑔)  
ℎ ∶=  𝑓;  𝑠 ∶=  𝑔;  
while 𝑠 ≠ 0  

𝑟 =  𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(ℎ, 𝑠);  
ℎ ∶ =  𝑠;  𝑠 ∶=  𝑟;  
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Early methods used Euclid’s algorithm for decoding or list 
decoding [23]. Later Patterson’s algorithm [16] provided an 
efficient method to decode received words when using a 
Goppa encoding [18]. On top one can correct approximately 

up to 
𝑡2

𝑛
 errors [4].  

C. Cyclic Codes  

Cyclic codes [17] are linear codes 𝐶 when in addition with 
any code word (𝑐𝑜, … , 𝑐𝑛−1) ∈ 𝐶 also (𝑐𝑛−1, 𝑐𝑜 , … , 𝑐𝑛−2) ∈ 𝐶, 
i.e. the shifted word is again a code word. Conventional Reed-

Solomon codes (code locators 𝛼𝑗 =  𝛼
𝑗−1 are powers of an 

element 𝛼 ∈ 𝔽 of multiplicative order 𝑛) as well as BCH 
codes (alternant codes of conventional Reed-Solomon codes) 
are prominent examples of cyclic codes. Cyclic codes feature 
efficient encoding (multiplication by the generator polynomial 
𝑔 of the code), syndrome computation (remainder of division 
by 𝑔) and decoding (sequentially by Meggitt decoder) via 
rather simple hardware.  

 

IV. APPLYING GROEBNER ALGORITHMS TO CODING  

There are several ways [10] to transform the decoding 
problem into a problem of solving a system of multivariate 
polynomial equations. A straightforward way is to consider the 
(unknown) entries 𝑒𝑖 of the error vector 𝑒 as variables 𝐸𝑖. If 𝐻 
consists of rows ℎ1, … , ℎ𝑟  with redundancy 𝑟 = 𝑛 − 𝑘 then the 
vector equation 𝑠 = 𝐻𝑒⊤ is equivalent to the 𝑟 linear equations 

 
∑(ℎ𝑖)𝑗  𝐸𝑗 − 𝑠𝑖 = 0  for  𝑖 = 1, … , 𝑟

𝑛

𝑗=1

 (1) 

We can formulate the condition that 𝑒 has at most 𝑡 = ⌊
𝑑−1

2
⌋ 

non-zero entries by the ( 𝑛
𝑡+1
) equations of multidegree 𝑡 + 1   

 𝐸𝑗1 ∙ 𝐸𝑗2 ∙ … ∙ 𝐸𝑗𝑡+1 = 0 for 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑡+1 ≤ 𝑛 (2) 

Let the two sets of equations together generate the ideal 𝐼. 
Then the Groebner basis of 𝐼 allows to read off the solution 𝐸, 
𝐸 = (𝐸1, … , 𝐸𝑛) i.e. the one element in the variety 𝑉(𝐼).  

In addition, [10][21] present alternatives to (2) with less 
equations of lower multidegree so that the Groebner basis is 
faster to compute.  

 

A. RS and gRS codes  

Decoding RS and gRS codes means to solve the key 
equations. Hence in general a formulation of the decoding 
problem using Groebner bases is near at hand. But exploiting 
the fact that Groebner bases help to determine the 
corresponding variety 𝑉(𝐼) of some ideal 𝐼 = 〈𝐺〉 for the 
reduced Groebner basis 𝐺 of 𝐼 explains why Groebner bases 
support list decoding naturally. [15] gives an overview over 
existing methods.  

B. Goppa codes  

[14] is most promising to decode Goppa codes. 
However, [14] shows ‘that one can, at least in theory, decode 
these codes up to half the true minimum distance by using the 
theory of Groebner bases’. Therefore, what is lacking is the 
transfer of the solution of [14] into praxis.  

C. Cyclic codes  

[12] gives an algorithm to decode cyclic codes using 
Groebner bases. The decoding problem is represented as a 
system of 𝑛 − 𝑘 linear equations together with 𝑛 quadratic 
equations in at most 𝑛 + 𝑑 unknowns, i.e. error locations and 
error values. Because the number of errors is not known 
beforehand, the algorithm then starts with assumed 𝑡 = 0 
errors and increases 𝑡 as long as the variety 𝑉(𝐼) = ∅ where 𝐼 
is the ideal generated by equations specified above. Once 
𝑉(𝐼) ≠ ∅ it contains the unique solution. However, the 
viability of the algorithm is limited because on one hand there 
are aforesaid efficient decoding methods and on the other hand 
the cost to compute a Groebner basis might be prohibitive.  

CONCLUSION  

This article is meant to set the stage for Groebner bases in 
coding. In the light of the very many application of Groebner 
bases in science and engineering [7] it is to be expected that 
further research will reveal even better algorithms for the 
decoding of linear (and non-linear) error-correcting codes. 
(Also, Groebner bases have spurred the specification and 
investigation of new linear codes [13][14].) The exact average 
complexity of determining the reduced Groebner basis of an 
ideal is not known right now. Once it has been determined [10] 
one will be able to set objectives and to identify limits of the 
approach to apply Groebner bases for coding.  
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