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Abstract—Distributed systems in the cloud computing context spread data across geographically remote datacenters to ensure 

always availability, scalability, and a best reactivity. Choosing latter properties in these systems leads to consistency issues (version 

conflicts, obsolete data, etc.); besides, most analytical solutions suggested for these issues are incomplete. SCOLCH proposes tradeoffs 

to achieve the required properties for service level agreement in cloud computing. 
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I. INTRODUCTION 

Data explosion on datawarehouses referred to as BigData, 
has completely shaken the modern distributed systems and has 
led to the cloud computing which was impulsed since the mid-
2000s by Amazon, Google, Salesforce.com, etc. The most of 
cloud service providers have set new levels of consistency in 
their distributed databases (Dynamo [15], PNUTS [13], 
BigTable [14], Cassandra [19]) to ensure better performance 
and to keep their databases always available. These actors 
claimed that the eventual consistency [29] should not be 
overcome by distributed systems in the cloud. This statement is 
based on the CAP theorem (Consistency, Availability, Partition 
tolerance), also known as Brewer's theorem [10]. Nonetheless, 
number of researchers have criticized this theorem and have 
showed its limitations [27, 28]. 

In section 2 of this paper, we give mathematical 
formalizations of basic concepts in multi-datacentric systems. 
In section 3, we give new theorems associated with tradeoffs 
between strong consistency, convergence, high availability, 
low latency and causal consistency. In section 4, we remind the 
related works on these issues. In the last section, we conclude 
and we give some opened issues. 

II. WIDELY DISTRIBUTED SYSTEMS ON THE CLOUD 

In this section, we outline basic concepts which are often 
used but rarely explained by the authors and which are subject 

to a lot of confusions. Cloud computing consists essentially of 
a set of datacenters (thousands of servers per datacenter) and 
services provided to ubiquitous clients across the internet. A 
datacenter allows to house computer systems and their 
associated components. 

A. Basic concepts  

1) Unreliable and  asynchronous systems: A system is said 

to be unreliable whether the messages between nodes may be 

reordered, dropped, or delayed for an arbitrary but finite 

duration [23].  A distributed system is asynchronous if its 

logical local clocks run at different speeds, i.e two operations 

that are performed simultaneously at two different nodes may 

appear to be executed at different logical time. 

2) Safety and liveness:Safety in distributed systems means 

that some bad thing doesn’t happen during execution; liveness 

means that a good thing happens eventually [2, 20]. 

3) Operation: An operation u is either a read operation or a 

write operation; it is characterized by two timestamps: the 

beginning of its performing on a node start(u), and the 

deliverance of a response which indicate the termination of the 

operation resp(u). An operation belongs to an execution 

(process), deals with an item on a node in a datacenter. 
Notations: We use the following notations which are 

equivalent: (opi(O,x))do/Nj), ((opi(O,x))do), ((opi(O,x))Nj) , 
((opi(x))do), ((opi(x)) Nj), (opi(x))  
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Whether opi (O; x))d=Nj  is an operation performed on the 

node Nj ϵ d a datacenter in the system. O is the item involved 

in op and x is the value modified or read in O. These depend 

on whether you point out the datacenter and the node where 

the operation is performed. 

 

4) Execution: An execution (process) is a series of 

operations performed by a user.  

5) Availability: It’s a liveness property that means that all 

operations issued to the datacenter complete successfully. No 

operation can block indefinitely. The high availability means 

that any operation to a relevant node should result a response. 

B. Happen-before relation:  

We recall the classical happen-before relation (HBR noted 

→) with adjustments. HBR is defined on a graph (G) which 
vertices reflect all operations performed by a relevant node in 
the system. HBR satisfies the following assertions:  

 If a and b are two operations on a same execution, 
then a→b if there’s an oriented edge from va to vb 
(with va and vb the respective vertices corresponding 
to a and b). 

 If w is an update and r is a read that returns the value 
written by w, then w→r. 

 Let a, b, and c are three operations in an execution, if 
a→b and b→c, then a→c. 

 Two operations u and v are concurrent if u→v and 
v→u are not verified. 

C. Levels of consistency 

1) Causal Consistency: For any execution: U={u1…uk}k≥1, 

U is causally consistent if and only if: 

 There is a serial order of the operations of U at each 
node, i.e., HBR is verified on the operations in U. 

 Any read operation  r in U at a node Ni on an item o 
returns the latest concurrent write at this node on o. 
r(o): x= xo such as wk(o, xo) => ∀ j≠k  wj(o, x) → wk. 

Causal consistency means that an operation opi(o,xo)dk/Nj 
completes if and only if: ∀ wi such as wi(xo)dk/ Nj → opi(xo)dk/Nj 
then wi  is completed. 

2) Linearizability or strong consistency: An execution U is 

said to be linearizable if its operations appear to take effect 

across the entire system at a single instance in time between the 

invocation and the completion (delivrance of response) of the 

operation. 

 
D is the set of datacenters {d1...dm}m≥1 ; wi the write number 

i of U; dh is a random datacenter; xois the latest updated value  
of item o returned wi . 

3) The window of inconsistency is the duration in which an 

item is not up to date at a node. 

D. Latency and convergence: 

1)  Latency: It is the delay between a request starts and its 

completion; particularly, the low latency is the latency which 

does not exceed few tens of milliseconds. 

2) Convergence: A system is strongly convergent if any 

set of relevant and connected nodes that have received, 

performed and propagated the same updates will have 

equivalent state, i.e., all the reads on these nodes will return the 

same result.  

 
 

 

Fig. 1. Illustration of the one way convergence 

In this section, we’ve outlined important concepts, what 
should be used in the next section to prove our choices.  

III. NEW TRADEOFFS ON MULTIDATACENTRIC SYSTEMS 

In this section, we are proving the incompatibility between 
strong consistency in a side and high availability, low latency 
and convergence in another side. Afterwards, we prove that we 
can guarantee the latter three properties if the causal 
consistency is ensured.  

A. Strong consistency in multi-datacentric 

systems 

1) Proposition 1: “Any multi-datacentric system is 

unreliable and asynchronous.”  
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The unreliability is intrinsic to widely extended networks as 

reported by Peter Deutsch [16].  

Synchronization means that all nodes in the system have the 

same clocks (a clock is a function in each node which returns 

a real number for any operation performed on that node). 

Ensuring the synchronization requires an enormous overhead, 

furthermore, in actual multi-datacentric systems; 

synchronizing clocks on the nodes is not so relevant if we 

want to guarantee always availability.. 

2) Theorem 1: “Any multi-datacentric system, which 

guarantees strong consistency, cannot be always available.”  
We assume an asynchronous and unreliable distributed 

system with n servers (S1…Sn)n≥2 allocated to m datacenters 
(d1… dm) and we assume that the strong consistency is 
guaranteed.  

d1={S1…Si}. . . dm={Sj+1…Sn}  i ≤ j 

A break on the network between two datacenters 
dp={Si…Si+k} and dq={Sj…Sj+k} partitions their set of servers. 
All messages between the two datacenters are lost or delayed 
until the recovery of the partitions. We suppose by 
contradiction that the system provide high availability. 

Let u1 be an update on two datacenters (dp and dq);  u1(o,x)dp 
is performed on a server in dp and is propagated through the 
others replicas of o. The high availability implies that the 
update is committed at all the replicas. Knowing that dq is 
unreachable; any read r1(o)dq to a  replicas in dq during the 
inconsistency window will necessarily return a wrong response 
xq≠x; which violate the strong consistency. Therefore we came 
across a contradiction. Consequently, the system will not be 
always-available if it is strongly consistent. 

B. Latency tradeoffs 

Although some works had highlighted the latency tradeoff on 

distributed systems [6,22,23], neither of them has 

mathematically proven the relationship between the latency 

and consistency level. In this section we try to prove that. 

1) Theorem 2: “Any multi-datacentric system that ensures 

strong consistency will see its latency increasing 

dramatically.” 
We suppose a multi-datacentric system (Ṡ), which is 

strongly consistent. For any execution U ϵ Ṡ, and for any 
update ui(x) ϵ U on two nodes belonging to any pair of 
datacenters (dj ,dk) ϵ Ṡ, ui(x)dj = ui(x)dk. The latency of ui(x) is: 

 

2) Lemma 1: In unreliable and asynchronous distributed 

systems, the more the system is spread, the more α is 

increasing. 
Linearizability implies that item replicated to multiple 

geographically different sites must be up to date at any 
moment. 

 

Linearizability requires a lot of message sending between 
datacenters of Ṡ, hence we’ll have: 

 

It’s clear that α increases seriously whether the number of 
involved datacenters grows (IMPL_DTC and σ are increasing). 

C. Best level of consistency in multi-

datacentric systems 

Most cloud providers grant just the eventual consistency 
and claim that it should not be overtaken [15]. But some recent 
works proved that eventual consistency should be overcome 
[7,23]. Here we are showing that the causal consistency which 
is better than eventual consistency can be guaranteed in highly 
available systems. 

1) Lemma 2:  
“Any asynchronous and unreliable distributed system can 

ensure high availability.” 

When we have an asynchronous system, termination of 
operations is not affected because there’s different timestamps 
for each node. Therefore, the availability can be guaranteed 
since operations should not be blocked. Whether a system is 
unreliable, messages  may be dropped, reordered, or delayed in 
an undefined but finite duration. This may affect the 
correctness of the results (safety) but not their outcome 
(liveness). Furthermore, dropping messages does not preclude 
the eventual completion of the queries accordingly any 
operation should terminate. From the above remarks, we can 
conclude that the high availability can be implemented in such 
unreliable and asynchronous systems. 

2) Proposition 2: “Any system which guarantees the 

causal consistency can accept concurrent writes.” 

It follows that for any execution U and G its HBR graph, all 

the write operations (wa,wb) ϵ U such as wa → wb and wb → wa 

are not verified in G, can be concurrent. 
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3) Theorem 3: “Any asynchronous and unreliable 

distributed system, which guarantees high availability, can 

ensure at most causal consistency.” 

We suppose a highly available system which ensures a 
consistency stronger than the causal consistency. For an 
execution in such systems U={u1…uk}k≥1 and G its associated 
HBR graph; we proceed as follows:  

We construct another execution U'={u1,…un} n>k  from U by 
joining it with R={uk…un} a set of read operations which 
control the implementation of U. We add the vertices 
corresponding to these reads to G and we obtain a new graph 
G1; then we construct edges on G1 in the following way: for 
each read in R we build an edge between it and all the non-
local write operations in which it depends in G1. The idea is to 
come establish a contradiction by processing a large number of 
operations; either we’ll have concurrent write operations 
necessarily (no operation blocks due to the high availability). 
This means that: 

 , such as wi and wj are concurrent 
so neither wi→wj nor wi→wj should be verified in G1. 
Therefore U’ does not exceed the causal consistency 
which tolerate the concurrency between any pair of 
write operations which are not dependent. 

 Finally based upon proposition 2, we can assert that 
strong consistency cannot be achieved in multi-
datacentric systems. 

D. Latency, convergence and high 

availability on multi-datacentric systems 

1) Corollary 1 of lemma 2: “Any asynchronous and 

unreliable system which provides causal consistency can 

achieve a high availability.” 

2) Lemma 3: “Any multi-datacentric system which 

achieves causal consistency can guarantee strong 

convergence.” 

 Let U=u1,…,uk be an execution in such system and 
(w) an update of U on two replicas (R1, R2). Write 
operations are performed if for any operations (opi) 
such as: opi→ w, then opi is performed before w at 
each replica. The idea is to commit entirely updates 
involving items on R1 and R2 (ui) ϵ U. And thereafter 
R1 exchange messages involving all the updates of U 
with R2.  

 Lemma 2 and theorem 3 allows us to assert that 
finally any read on the items updated on R1 and R2 
will give the same result. Hence R1 and R2 are 
convergent, we can generalize this on any connected 
replica Ri and Rj of the system, . 

3) Lemma 4: “If we’ve causal consistency in an 

asynchronous and unreliable distributed system, we can 

improve drastically the latency.” 
(1) and (3) give: 

 

RF can be ignored here; the messages are eventually 
delivered even if there’s a failure or if messages are delayed for 
a finite duration. The causal consistency should be guaranteed 
at each node by his cache memory. 

The number of messages across datacenters falls out in a 
spectacular way when we switch to the causal consistency. 
Consequently σ decreases drastically whether the number of 
message goes down; hence σ falls in whether we do not require 
higher than the causal consistency. 

4) Theorem 4.4: “Any multi-datacentric distributed system 

which guarantees at most the causal consistency can provide 

the following properties: strong convergence, high availability 

and low latency.” 
This theorem is a corollary of the corollary 1 and the 

lemmas 4 and 5. 

E. Corollary 5.1 (SCOLCH theorem) 

Based on the foregoing; we state the following theorem: 
“On multi-datacentric systems we have an exclusive choice 
between the strong consistency in a side; and low latency, 
strong convergence, and high availability in another side.”  

IV. RELATED WORKS 

A little over a decade ago the CAP theorem [10] shook the 
world of distributed systems and has significantly influenced 
the actors of the cloud computing. Accordingly the consistency 
on distributed databases at a large scale aroused considerable 
interest recent years. Obviously a series of papers published 
about the CAP conjecture by Brewer, Gilbert and Lynch, 
Abadi, Ramakrishnan, Shim, and Birman [1,9,11,17,24,26] 
have reignited the debate on the tradeoffs in the distributed 
systems. Additionally, in earlier 2000’s, Brzezinski has 
published a good work on the causal consistency. Afterwards, 
Mahajan [23] and Shapiro [25] works have highlighted the 
concept of convergence. Mahajan et al. [23] proved also that 
the real-time causal consistency was insurmountable in 
unreliable distributed systems. Bailis proposed highly available 
transactions (HAT) as an alternative for ACID databases in the 
cloud within a series of publications [4, 5, 6]. He proposed also 
the PBS (Probabilistically Bounded Staleness) which could 
minimize the staleness of data and guarantee a limited latency 
[7]; he discussed also the limitations of eventual consistency 
[4]. CALM conjecture (Consistency And Logical 
Monotonicity) was proven by Alvaro who proposed also 
‘coordination-free’ distributed modals [3]. Furthermore, Lloyd 
et al.[21] presented the design and implementation of COPS, a 
key-value store that delivers a causal consistency model with 
convergent conflict handling; he proposed also a scalable, geo-
replicated storage system that guarantees low latency [22]. 
Finally, T. Kraska et al. [18] have proposed MDCC: an 
optimistic commit protocol for geo-replicated transactions. 
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V. CONCLUSION AND FUTURE WORK 

The tradeoffs around the consistency property remain a 
nagging issue in multi-datacentric systems. In this paper we’ve 
lightened some basic concepts which are rarely explained by 
authors. Even if there are some theorems, the theoretical proofs 
are sorely lacking at this level, so we’ve given new theorems 
on these tradeoffs. Unlike the CAP theorem [10] which does 
not clearly take into account the latency and the convergence, 
our theorems prove that we can guarantee low latency, strong 
convergence and high availability in addition to the causal 
consistency which is proven to be better than the eventual 
consistency. In addition, our theorems prove that we cannot 
ensure the strong consistency without thereby sacrificing high 
availability and dealing with an unbridled growth of the 
latency. 

In future work, it should be important clarify the fact that 
the very famous CAP theorem is not proved correctly and that 
CAP statement is out of context in actual distributed systems 
on the cloud. 
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