
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0031 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Consistency tradeoffs on distributed multi-

datacentric systems
 SCOLCH theorems

Balla W. Diack and Samba Ndiaye
Dept. of Mathematic and Informatics

Cheikh Anta Diop University of Dakar

Dakar, Senegal 18522

balla.diack@ucad.edu.sn

samba.ndiaye@ucad.edu.sn

Yahya Slimani

Department of Computer Sciences

ISAMM, University of Manuba

2060 Manuba, Tunisia

Abstract—Distributed systems in the cloud computing context spread data across geographically remote datacenters to ensure

always availability, scalability, and a best reactivity. Choosing latter properties in these systems leads to consistency issues (version

conflicts, obsolete data, etc.); besides, most analytical solutions suggested for these issues are incomplete. SCOLCH proposes tradeoffs

to achieve the required properties for service level agreement in cloud computing.

Keywords— multi-datacentric systems; consistency; convergence; latency; availability

I. INTRODUCTION

Data explosion on datawarehouses referred to as BigData,
has completely shaken the modern distributed systems and has
led to the cloud computing which was impulsed since the mid-
2000s by Amazon, Google, Salesforce.com, etc. The most of
cloud service providers have set new levels of consistency in
their distributed databases (Dynamo [15], PNUTS [13],
BigTable [14], Cassandra [19]) to ensure better performance
and to keep their databases always available. These actors
claimed that the eventual consistency [29] should not be
overcome by distributed systems in the cloud. This statement is
based on the CAP theorem (Consistency, Availability, Partition
tolerance), also known as Brewer's theorem [10]. Nonetheless,
number of researchers have criticized this theorem and have
showed its limitations [27, 28].

In section 2 of this paper, we give mathematical
formalizations of basic concepts in multi-datacentric systems.
In section 3, we give new theorems associated with tradeoffs
between strong consistency, convergence, high availability,
low latency and causal consistency. In section 4, we remind the
related works on these issues. In the last section, we conclude
and we give some opened issues.

II. WIDELY DISTRIBUTED SYSTEMS ON THE CLOUD

In this section, we outline basic concepts which are often
used but rarely explained by the authors and which are subject

to a lot of confusions. Cloud computing consists essentially of
a set of datacenters (thousands of servers per datacenter) and
services provided to ubiquitous clients across the internet. A
datacenter allows to house computer systems and their
associated components.

A. Basic concepts

1) Unreliable and asynchronous systems: A system is said

to be unreliable whether the messages between nodes may be

reordered, dropped, or delayed for an arbitrary but finite

duration [23]. A distributed system is asynchronous if its

logical local clocks run at different speeds, i.e two operations

that are performed simultaneously at two different nodes may

appear to be executed at different logical time.

2) Safety and liveness:Safety in distributed systems means

that some bad thing doesn’t happen during execution; liveness

means that a good thing happens eventually [2, 20].

3) Operation: An operation u is either a read operation or a

write operation; it is characterized by two timestamps: the

beginning of its performing on a node start(u), and the

deliverance of a response which indicate the termination of the

operation resp(u). An operation belongs to an execution

(process), deals with an item on a node in a datacenter.
Notations: We use the following notations which are

equivalent: (opi(O,x))do/Nj), ((opi(O,x))do), ((opi(O,x))Nj) ,
((opi(x))do), ((opi(x)) Nj), (opi(x))

Page | 208

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0031 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Whether opi (O; x))d=Nj is an operation performed on the

node Nj ϵ d a datacenter in the system. O is the item involved

in op and x is the value modified or read in O. These depend

on whether you point out the datacenter and the node where

the operation is performed.

4) Execution: An execution (process) is a series of

operations performed by a user.

5) Availability: It’s a liveness property that means that all

operations issued to the datacenter complete successfully. No

operation can block indefinitely. The high availability means

that any operation to a relevant node should result a response.

B. Happen-before relation:

We recall the classical happen-before relation (HBR noted

→) with adjustments. HBR is defined on a graph (G) which
vertices reflect all operations performed by a relevant node in
the system. HBR satisfies the following assertions:

 If a and b are two operations on a same execution,
then a→b if there’s an oriented edge from va to vb
(with va and vb the respective vertices corresponding
to a and b).

 If w is an update and r is a read that returns the value
written by w, then w→r.

 Let a, b, and c are three operations in an execution, if
a→b and b→c, then a→c.

 Two operations u and v are concurrent if u→v and
v→u are not verified.

C. Levels of consistency

1) Causal Consistency: For any execution: U={u1…uk}k≥1,

U is causally consistent if and only if:

 There is a serial order of the operations of U at each
node, i.e., HBR is verified on the operations in U.

 Any read operation r in U at a node Ni on an item o
returns the latest concurrent write at this node on o.
r(o): x= xo such as wk(o, xo) => ∀ j≠k wj(o, x) → wk.

Causal consistency means that an operation opi(o,xo)dk/Nj
completes if and only if: ∀ wi such as wi(xo)dk/ Nj → opi(xo)dk/Nj
then wi is completed.

2) Linearizability or strong consistency: An execution U is

said to be linearizable if its operations appear to take effect

across the entire system at a single instance in time between the

invocation and the completion (delivrance of response) of the

operation.

D is the set of datacenters {d1...dm}m≥1 ; wi the write number

i of U; dh is a random datacenter; xois the latest updated value
of item o returned wi .

3) The window of inconsistency is the duration in which an

item is not up to date at a node.

D. Latency and convergence:

1) Latency: It is the delay between a request starts and its

completion; particularly, the low latency is the latency which

does not exceed few tens of milliseconds.

2) Convergence: A system is strongly convergent if any

set of relevant and connected nodes that have received,

performed and propagated the same updates will have

equivalent state, i.e., all the reads on these nodes will return the

same result.

Fig. 1. Illustration of the one way convergence

In this section, we’ve outlined important concepts, what
should be used in the next section to prove our choices.

III. NEW TRADEOFFS ON MULTIDATACENTRIC SYSTEMS

In this section, we are proving the incompatibility between
strong consistency in a side and high availability, low latency
and convergence in another side. Afterwards, we prove that we
can guarantee the latter three properties if the causal
consistency is ensured.

A. Strong consistency in multi-datacentric

systems

1) Proposition 1: “Any multi-datacentric system is

unreliable and asynchronous.”

Page | 209

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0031 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The unreliability is intrinsic to widely extended networks as

reported by Peter Deutsch [16].

Synchronization means that all nodes in the system have the

same clocks (a clock is a function in each node which returns

a real number for any operation performed on that node).

Ensuring the synchronization requires an enormous overhead,

furthermore, in actual multi-datacentric systems;

synchronizing clocks on the nodes is not so relevant if we

want to guarantee always availability..

2) Theorem 1: “Any multi-datacentric system, which

guarantees strong consistency, cannot be always available.”
We assume an asynchronous and unreliable distributed

system with n servers (S1…Sn)n≥2 allocated to m datacenters
(d1… dm) and we assume that the strong consistency is
guaranteed.

d1={S1…Si}. . . dm={Sj+1…Sn} i ≤ j

A break on the network between two datacenters
dp={Si…Si+k} and dq={Sj…Sj+k} partitions their set of servers.
All messages between the two datacenters are lost or delayed
until the recovery of the partitions. We suppose by
contradiction that the system provide high availability.

Let u1 be an update on two datacenters (dp and dq); u1(o,x)dp
is performed on a server in dp and is propagated through the
others replicas of o. The high availability implies that the
update is committed at all the replicas. Knowing that dq is
unreachable; any read r1(o)dq to a replicas in dq during the
inconsistency window will necessarily return a wrong response
xq≠x; which violate the strong consistency. Therefore we came
across a contradiction. Consequently, the system will not be
always-available if it is strongly consistent.

B. Latency tradeoffs

Although some works had highlighted the latency tradeoff on

distributed systems [6,22,23], neither of them has

mathematically proven the relationship between the latency

and consistency level. In this section we try to prove that.

1) Theorem 2: “Any multi-datacentric system that ensures

strong consistency will see its latency increasing

dramatically.”
We suppose a multi-datacentric system (Ṡ), which is

strongly consistent. For any execution U ϵ Ṡ, and for any
update ui(x) ϵ U on two nodes belonging to any pair of
datacenters (dj ,dk) ϵ Ṡ, ui(x)dj = ui(x)dk. The latency of ui(x) is:

2) Lemma 1: In unreliable and asynchronous distributed

systems, the more the system is spread, the more α is

increasing.
Linearizability implies that item replicated to multiple

geographically different sites must be up to date at any
moment.

Linearizability requires a lot of message sending between
datacenters of Ṡ, hence we’ll have:

It’s clear that α increases seriously whether the number of
involved datacenters grows (IMPL_DTC and σ are increasing).

C. Best level of consistency in multi-

datacentric systems

Most cloud providers grant just the eventual consistency
and claim that it should not be overtaken [15]. But some recent
works proved that eventual consistency should be overcome
[7,23]. Here we are showing that the causal consistency which
is better than eventual consistency can be guaranteed in highly
available systems.

1) Lemma 2:
“Any asynchronous and unreliable distributed system can

ensure high availability.”

When we have an asynchronous system, termination of
operations is not affected because there’s different timestamps
for each node. Therefore, the availability can be guaranteed
since operations should not be blocked. Whether a system is
unreliable, messages may be dropped, reordered, or delayed in
an undefined but finite duration. This may affect the
correctness of the results (safety) but not their outcome
(liveness). Furthermore, dropping messages does not preclude
the eventual completion of the queries accordingly any
operation should terminate. From the above remarks, we can
conclude that the high availability can be implemented in such
unreliable and asynchronous systems.

2) Proposition 2: “Any system which guarantees the

causal consistency can accept concurrent writes.”

It follows that for any execution U and G its HBR graph, all

the write operations (wa,wb) ϵ U such as wa → wb and wb → wa

are not verified in G, can be concurrent.

Page | 210

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0031 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

3) Theorem 3: “Any asynchronous and unreliable

distributed system, which guarantees high availability, can

ensure at most causal consistency.”

We suppose a highly available system which ensures a
consistency stronger than the causal consistency. For an
execution in such systems U={u1…uk}k≥1 and G its associated
HBR graph; we proceed as follows:

We construct another execution U'={u1,…un} n>k from U by
joining it with R={uk…un} a set of read operations which
control the implementation of U. We add the vertices
corresponding to these reads to G and we obtain a new graph
G1; then we construct edges on G1 in the following way: for
each read in R we build an edge between it and all the non-
local write operations in which it depends in G1. The idea is to
come establish a contradiction by processing a large number of
operations; either we’ll have concurrent write operations
necessarily (no operation blocks due to the high availability).
This means that:

 , such as wi and wj are concurrent
so neither wi→wj nor wi→wj should be verified in G1.
Therefore U’ does not exceed the causal consistency
which tolerate the concurrency between any pair of
write operations which are not dependent.

 Finally based upon proposition 2, we can assert that
strong consistency cannot be achieved in multi-
datacentric systems.

D. Latency, convergence and high

availability on multi-datacentric systems

1) Corollary 1 of lemma 2: “Any asynchronous and

unreliable system which provides causal consistency can

achieve a high availability.”

2) Lemma 3: “Any multi-datacentric system which

achieves causal consistency can guarantee strong

convergence.”

 Let U=u1,…,uk be an execution in such system and
(w) an update of U on two replicas (R1, R2). Write
operations are performed if for any operations (opi)
such as: opi→ w, then opi is performed before w at
each replica. The idea is to commit entirely updates
involving items on R1 and R2 (ui) ϵ U. And thereafter
R1 exchange messages involving all the updates of U
with R2.

 Lemma 2 and theorem 3 allows us to assert that
finally any read on the items updated on R1 and R2
will give the same result. Hence R1 and R2 are
convergent, we can generalize this on any connected
replica Ri and Rj of the system, .

3) Lemma 4: “If we’ve causal consistency in an

asynchronous and unreliable distributed system, we can

improve drastically the latency.”
(1) and (3) give:

RF can be ignored here; the messages are eventually
delivered even if there’s a failure or if messages are delayed for
a finite duration. The causal consistency should be guaranteed
at each node by his cache memory.

The number of messages across datacenters falls out in a
spectacular way when we switch to the causal consistency.
Consequently σ decreases drastically whether the number of
message goes down; hence σ falls in whether we do not require
higher than the causal consistency.

4) Theorem 4.4: “Any multi-datacentric distributed system

which guarantees at most the causal consistency can provide

the following properties: strong convergence, high availability

and low latency.”
This theorem is a corollary of the corollary 1 and the

lemmas 4 and 5.

E. Corollary 5.1 (SCOLCH theorem)

Based on the foregoing; we state the following theorem:
“On multi-datacentric systems we have an exclusive choice
between the strong consistency in a side; and low latency,
strong convergence, and high availability in another side.”

IV. RELATED WORKS

A little over a decade ago the CAP theorem [10] shook the
world of distributed systems and has significantly influenced
the actors of the cloud computing. Accordingly the consistency
on distributed databases at a large scale aroused considerable
interest recent years. Obviously a series of papers published
about the CAP conjecture by Brewer, Gilbert and Lynch,
Abadi, Ramakrishnan, Shim, and Birman [1,9,11,17,24,26]
have reignited the debate on the tradeoffs in the distributed
systems. Additionally, in earlier 2000’s, Brzezinski has
published a good work on the causal consistency. Afterwards,
Mahajan [23] and Shapiro [25] works have highlighted the
concept of convergence. Mahajan et al. [23] proved also that
the real-time causal consistency was insurmountable in
unreliable distributed systems. Bailis proposed highly available
transactions (HAT) as an alternative for ACID databases in the
cloud within a series of publications [4, 5, 6]. He proposed also
the PBS (Probabilistically Bounded Staleness) which could
minimize the staleness of data and guarantee a limited latency
[7]; he discussed also the limitations of eventual consistency
[4]. CALM conjecture (Consistency And Logical
Monotonicity) was proven by Alvaro who proposed also
‘coordination-free’ distributed modals [3]. Furthermore, Lloyd
et al.[21] presented the design and implementation of COPS, a
key-value store that delivers a causal consistency model with
convergent conflict handling; he proposed also a scalable, geo-
replicated storage system that guarantees low latency [22].
Finally, T. Kraska et al. [18] have proposed MDCC: an
optimistic commit protocol for geo-replicated transactions.

Page | 211

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0031 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

V. CONCLUSION AND FUTURE WORK

The tradeoffs around the consistency property remain a
nagging issue in multi-datacentric systems. In this paper we’ve
lightened some basic concepts which are rarely explained by
authors. Even if there are some theorems, the theoretical proofs
are sorely lacking at this level, so we’ve given new theorems
on these tradeoffs. Unlike the CAP theorem [10] which does
not clearly take into account the latency and the convergence,
our theorems prove that we can guarantee low latency, strong
convergence and high availability in addition to the causal
consistency which is proven to be better than the eventual
consistency. In addition, our theorems prove that we cannot
ensure the strong consistency without thereby sacrificing high
availability and dealing with an unbridled growth of the
latency.

In future work, it should be important clarify the fact that
the very famous CAP theorem is not proved correctly and that
CAP statement is out of context in actual distributed systems
on the cloud.

ACKNOWLEDGMENT

We would like to thank the members of the database group
of the doctoral school of mathematics and computer science of
UCAD university of Dakar for their contributions to our
research. We thank also the ICIT15 reviewers for their helpful
feedback on this work.

REFERENCES

[1] D. J. Abadi, Consistency Tradeoffs in Modern Distributed Database
System Design, IEEE Computer Society, vol. 45, no. 2, pp. 37-42.
2012.

[2] B., Alpern; F. B., Schneider. "Recognizing safety and liveness".
Distributed Computing 2: pp. 117-126. (1987)

[3] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Mar-czak.
Consistency analysis in Bloom: a CALM and collected approach. In
CIDR 2011.

[4] P. Bailis; A. Ghodsi. "Eventual Consistency Today: Limitations,
Extensions, and Beyond". ACMQueue 11 : 20. April 2013.

[5] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal
consistency. SIGMOD 2013.

[6] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. “Highly Available Transactions: Virtues and
Limitations”. In VLDB 2014.

[7] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M.
Hellerstein, and Ion Stoica. “Quantifying Eventual Consistency with
PBS”. Communication of the ACM, vol. 57, n°8. August 2014.

[8] P. Bernstein and S. Das. “Rethinking eventual consistency”. In
SIGMOD, 2013.

[9] K. Birman and al., “Overcoming CAP with Consistent Soft-State
Replication”, IEEE Computer Society, vol. 45, Issue: 2 pp. 50- 58,
February 2012.

[10] E. Brewer, Towards Robust Distributed Systems, Portland, Oregon,
Keynote at the ACM Symposium on Principles of Distributed
Computing (PODC). July 2000.

[11] E. Brewer, Pushing the CAP: Strategies for Consistency and
Availability, IEEE Computer Society, pp. 23-29. February 2012.

[12] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak, “From session
causality to causal consistency, in Proc. of 12th Euromicro Conf. on
Parallel”, Distributed and Network-Based Processing. Citeseer, pp.
152–158. 2004.

[13] F. Chang et al, “BigTable: A Distributed Storage System for Structured
Data”, Seventh Symposium on Operating System Design and
Implementation, November 2006.

[14] B. Cooper et al. PNUTS: Yahoo!’s hosted data serving platform. In
VLDB 2008.

[15] B. DeCandia and al., “Dynamo: Amazon‟s Highly Available Key-
Value Store”, Proceedings 21st ACM SIGOPS Symposium on B. F.
Cooper, PNUTS: Yahoo!’s Hosted Data Serving Platform, Proc. VLDB
Endowment (VLDB 08), pp. 1277-1288. 2008.

[16] P. Deutsch. “The eight fallacies of distributed computing.”
http://tinyurl.com/c6vvtzg, 1994.

[17] S. Gilbert and N. Lynch, Perspectives on the CAP theorem, IEEE
Computer Society, vol. 45, no. 2, pp. 30-36. 2012.

[18] T. Kraska, G. Pang, M. Franklin, and S. Madden. “Mdcc: Multi-data
center consistency”. In Eurosys 2013.

[19] A. Lakshman and P. Malik, Cassandra: a decentralized structured
storage system, ACM SIGOPS Operating Systems Review, vol. 44, ,
pp. 35–40. 2010.

[20] L. Lamport, L.. "Proving the Correctness of Multiprocess Programs".
IEEE Transactions on Software Engineering : (1977) march, pp. 125–
143.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage
with COPS”. In SOSP 2011.

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency georeplicated storage. In NSDI 2013.

[23] P. Mahajan , L. Alvisi , M. Dahlin. Consistency, Availability, and
Convergence. Department of Computer Science, University of Texas at
Austin. Technical Report (UTCS TR-11-22).2012.

[24] R. Ramakrishnan, CAP and Cloud Data Management, IEEE Computer
Society, vol. 45, Issue: 2 pp. 43 -49, February 2012.

[25] M. Shapiro, Convergent and Commutative Replicated Data Types,
Bulletin of the EATCS, no. 104, pp. 67-88. June 2011.

[26] S. S. Y. Shim, CAP theorem’s growing impact, IEEE Computer Society,
vol. 45 , Issue: 2 pp 20 -21, February 2012.

[27] M. Stonebraker, Errors in Database Systems, Eventual Consistency, and
the CAP Theorem, blog, Comm. ACM, http://cacm.acm.org/blogs/blog-
cacm/83396-errors-in-database-systems-eventualconsistency-and-
thecap-theorem. 2010.

[28] M. Stonebraker, Clarifications on the CAP Theorem and Data-
Related Errors, VoltDB blog, http://blog.voltdb.com/clarifications-cap-
theorem-and-data-related-error. 2010.

[29] W. Vogels, “Eventually Consistent”, ACM Queue, vol. 6, n° 6, pp. 14-
19. 2008.

Page | 212

	Cloud Computing
	CR-ICIT15247
	CR-ICIT15315
	CR-ICIT15470
	CR-ICIT15490

