
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

SwiftEnc: Hybrid Cryptosystem with Hash-Based

Dynamic Key Encryption

Yasir S. Alagl, El-Sayed M. El-Alfy
College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

{g200720290, alfy}@kfupm.edu.sa

Abstract—With the emerging need to store massive data in cyberspace and cross platforms, whether in local file systems or cloud-

based services, certain security requirements must be met to efficiently protect confidentiality and privacy and manage the large

number of keys and access policies. Most of the current encryption standards emphasize one of two trade-off factors: speed of

encryption versus ease of key management. Though asymmetric-key encryption does not require the sender and receiver to share a

common secret similar to symmetric-key encryption, the cost of the mathematical computations may be unaffordable. In this paper, we

first review the state-of-the-art of hybrid cryptosystems. Then, we propose a novel scheme for lightweight encryption of bulk data based

on recursive cryptographic hashes and dynamic keys. The effectiveness of the proposed scheme is demonstrated on three files having

different sizes, types and contents.

Keywords—data security; bulk data encryption; cryptographic hasing; hybrid crytosystems; dynamic keys; password-based key

derivation; security vault.

I. INTRODUCTION

As the Internet grows in size and number of users, new
technologies and applications inevitably emerge to comply
with such growth and to satisfy various demands of users.
Along with this growing and collaborative environment, the
dependability on multiple technological platforms that serve as
tools in accommodating many aspects of day-to-day tasks also
increases. However, with the tremendous benefits these
services provide comes the struggle of protecting users’
sensitive data and files within underlying cross-platform
systems. The ability to backup, share and synchronize files and
folders is becoming crucial over time. The trend to store large
volumes of various types of data and files securely is tempting
due to durability, portability, flexibility and ease of share, and
resistance to threats.

At the heart of security defense mechanisms, encryption
arises to protect the confidentiality of valuable data from
unauthorized access by programs and individuals [1].
However, at relatively high computational costs, encryption is
usually delegated to other parties or skipped in total, thus,
exposing the value of an asset to threats [2]. For example,
Dropbox, which is a widely-used cloud-based service for
hosting files, has been criticized for its weak protection of
user’s privacy since its first release in September 2008. Lately,
similar to a competitive service known as SpiderOak, Dropbox
allowed its customers to encrypt their files on the server using
the Advanced Encryption Standard (AES) with 256-bit key. In
contrast, SpiderOak stores an encrypted version of the
decryption key as well in a manner that even the company’s
employers will not be able to decrypt these files without
knowing the customer’s password [3]. However, if an intruder
managed to get that key, all files can be decrypted.

Generally, cryptosystems fall under two broad categories:
symmetric and asymmetric [5]. Although symmetric-key
encryption is proven to be relatively faster than asymmetric-
key encryption [4], it suffers from two issues. First, it requires
sharing a key between the encryption and decryption entities,
which might be in different systems. Second, it requires a large
number of unique shared keys. Consider a group of N members
who engage in an exchange process of a valuable asset T times.
Furthermore, consider that each exchange requires an asset to
be encrypted with a uniquely generated symmetric key prior to
exchanging it. Each member should encrypt a given asset (N –
1) × T times, in addition to sharing (N – 1) × T symmetric keys
through other secure channels. Moreover, consider having a
pool of assets all of which require exchange. The reader can
notice the exponential growth in the number of keys and the
overhead of sharing them. Examples of the popular symmetric-
key encryption standards are Blowfish, International Data
Encryption Algorithm (IDEA), Data Encryption Standard
(DES), and Advanced Encryption Standard (AES).

Asymmetric encryption, on the other hand, doesn’t require
the disposal of keys upon each exchange, due to the
concealment of the private key. Consider the previous scenario,
however, with asymmetric encryption as a requirement for
assets exchange. Each member in the group announces his own
public key that should be used prior to commencing an
exchange with him. This key can still be used with every
subsequent exchange resulting in eliminating the overhead of
key exchange and the generation of keys. The security of
asymmetric encryption depends on the intractability of the
discrete logarithm problem and hence comes with higher costs
for the encryption and decryption process, i.e. it is relatively
slower to encrypt bulk files. Examples of popular asymmetric-
key encryption are RSA and ElGamal cryptosystems [5].

Page | 186

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Here comes the need of an algorithm that combines the
merits of the two categories into what is known as hybrid
cryptosystems [6]. The goal is to use the public/private key
pairs, but maintain superior performance than that of
asymmetric encryption. PGP, GnuPG and OpenPGP are
examples of the popular hybrid cryptosystems [7]. Another
example is a proprietary standard used by Microsoft for
Encrypting File System (EFS) since the release of Windows
NT Version 3.0.

In this paper, we introduce SwiftEnc, a lightweight hybrid
scheme that can be used effectively to encrypt bulk data.
SwiftEnc is a hash-based obfuscation algorithm that uses
variable-length dynamic key computed based on the file to be
encrypted. It also uses an existing asymmetric encryption
algorithm to encrypt. The goal is to produce a cipher text in
relatively faster time than those of asymmetric algorithms.
Based on this scheme, a prototype of a security vault is
developed for managing keys in a central store such as
Windows Registry.

The rest of the paper is organized as follows. Section II
reviews related work. Subsequently, Section III presents the
proposed scheme, SwiftEnc algorithm, and describes each of
its components in details. We then provide benchmarks
comparing the proposed algorithm to existing encryption
algorithms in Section IV. Finally, the paper conclusion is given
in Section V.

II. RELATED WORK

There have been many trails in both the academic and
industry sectors to produce fast encryption algorithms.
However, each within its own domain, there hasn’t been much
work on a general-purpose algorithm that encrypts any file
with adequate performance. In this section, we shed the light
on some of the recent work that has been made on fast
encryption. Presumably, AES is considered the fastest accepted
standard of an encryption algorithm worldwide [8]. However, it
may not be suitable for very constrained environments and still
more improvements are needed [9].

In [10], Wang et al. discussed the use of chaos-based fast
image encryption algorithm for image encryption. They
proposed combining the scanning process of an image on both
stages of permutation and diffusion into one, thus reducing the
time required for scanning dramatically. They partitioned the
image into blocks of pixels and shuffled the blocks using
spatiotemporal chaos and diffused them to change the pixel
value at the same time. They also presented an efficient method
for pseudo-random generation that is used within their
algorithm [11].

In [12], Verkhovsky explained the nature of encryption
using Gaussians that belong to complex numbers family. He
proposed a new algorithm that finds all cubic roots of Gaussian
integers. The algorithm introduces some constraints with
regards to encryption time. However, decryption is
substantially slower than encryption and hence it only fits
applications where only the sender has limited time.

In [13], Hohenberger and Waters introduced an Attribute-
Based Encryption (ABE) algorithm with fast decryption. ABE
is an expansion of public-key encryption that allows users to
encrypt and decrypt messages based on their attributes.
However, the complexity of decryption increases as more
attributes are utilized. The proposed ABE scheme allows a
cipher text to be decrypted with constant number of pairing,
specifically 2 pairings, by increasing the private key size.

In [14], LAE is described as a high-speed software block
cipher that competes with AES on all standard platforms such
as Intel, AMD and ColdFire. LAE works with 128-bit block
size and similar key sizes to those of AES, i.e. 128, 192, and
256. It’s shown that LAE is faster than AES due to the use of
ARX operations (modular Addition, bitwise Rotation, and
bitwise XOR) which are supported on most 32-bit and 64- bit
platforms. Moreover, LAE rounds are all the same without
requiring special end round. The authors also showed that LAE
is secure against existing attacks.

Among the attempts to develop encryption algorithms with
low implementation complexity comes a promising class of
lightweight techniques [15], [16], [17], [18]. For instance,
PRESENT is a lightweight block cipher that has been shown to
be 2.5 times faster than AES [9].

The concept of dynamic keys or sequence of one-time
symmetric cryptographic keys is described and analyzed in
[19]. Based on this analysis, the advantages of dynamic keys
are revealed in terms of security and efficiency. In essence, if
the hacker is able to expose one message, the other messages
remain secure. Lastly, in [20] and [21] some trials were made
to accelerate the encryption process by the use of Graphical
Processing Unit (GPU). However, these trials targeted High
Performance Database Management System (DBMS). In [22],
the use of GPUs was also noted to accelerate homomorphic
encryption.

Some systems and platforms have developed to provide
solutions for big data and to establish secure vault for the
increased number of keys, certificates and policies. Examples
of these systems are the IBM InfoSphere [24], Oracle TDE
[25], Microsoft TDE [26], and Volumetric Data Security
products [27].

III. PROPOSED CRYPTOSYSTEM

In this section, we provide details on the proposed scheme,
SwiftEnc. The implementation of SwiftEnc is aimed to be
flexible and lightweight. Any available encryption algorithms
can be included as long as they meet the requirements of
SwiftEnc. The proposed scheme starts by acquiring a secret
phrase (passphrase) from the user. This passphrase is used to
generate a pair of public and private keys for the chosen
asymmetric encryption algorithm. The private key can be
discarded at this point while the public key should be stored.
The user then selects a file to be encrypted and generates key
material or key seed, h0, from the file itself and some secure
pseudo-random numbers. Once the key material is generated, it
is passed through a sequence of hashing. To increase the
security by maximizing the entropy, the input to each hashing

Page | 187

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

step is output from the previous step XORed with a counter.
The process stops once we acquire a bulk key, Ks, that has
equal length to the file we intend to encrypt.

To encrypt the file, a simple operation similar to stream
cipher is then used. In our case, we XOR the key, Ks, with the
file to generate an obfuscated secure output file that can be
shared over insecure medium or stored locally. Meanwhile, the
public key that was generated from the user supplied
passphrase is used to encrypt the initial seed, h0, and store it
with the obfuscated file. Figure 1 shows an outline for the
process of encryption in SwiftEnc. The subsequent subsections
provide more details on our implementation of the proposed
SwiftEnc cryptosystem.

Fig. 1. Outline of the SwiftEnc process.

A. Key Generation and Management

Asymmetric encryption is used to protect the file
encryption key seed, h0. Our choice for asymmetric key
generation and sharing in SwiftEnc is ElGamal public-key
cryptosystem [23]. However, should the implementer of
SwiftEnc make use of other asymmetric encryption algorithm,
the general scheme still holds. For instance, using RSA
requires the use of two keys: public key and private key. While
the private key should be kept safe and private by its owner
from unauthorized access (as the name suggests), the public
key does not. Assuming a single platform on which the user
intends to encrypt his assets or files for his own use, the public
key can be kept in his home directory or in any sort of non-
protected data store, e.g. Windows Registry. In a scenario
where a group of members communicate securely back and
forth, each member’s public key should be announced within
the group together with a certificate to authenticate the validity
of the public key.

To avoid the need to a trusted third party to issue a
certificate, we use ElGamal algorithm for key generation and
sharing. This algorithm is based on Deffie-Hellman key
exchange and uses two keys at each of the sender and the

receiver sides. These keys are generated in such a way to allow
them to share a session key. For example, assume A is the
sender and B is the receiver. Then, A should have Kprv,A and
Kpub,A, and B has Kprv,B and Kpub,B. The receiver, B, starts by
defining a cyclic group G of order p, where p is a large prime
number. This cyclic group has a generator g. B then selects a
private key Kprv,B < p - 1 randomly from G and calculates a
corresponding public key Kpub,B as follows:

 ,

, modprv BK

pub BK g p

B announces the tuple (Kpub,B, g, p) or stores it in a shared
folder. If A wants to securely send a file to B, it should obtain
the tuple (Kpub,B, g, p) and selects a private key Kprv,A from the
group G generated by (g, p). Then, A calculates an ephemeral
public key Kpub,A as follows:

 ,

,A modprv AK

pubK g p

It also calculates a shared key, Km, to be used for encrypting the
file encryption key seed, h0. The calculation of Km is as
follows:

 ,

,() modprv BK

m pub BK K p

Km will be used to encrypt the message using ElGamal
encryption algorithm and the encrypted message together with
Kpub,A will submitted to the receiver. The decryption will be
performed use inverse operation.

As an alternative approach in SwiftEnc, we used SHA-512
to hash the passphrase and the result x is identified as our
private key. The passphrase could be of any length,
complexity, and combination of characters’ groups, e.g.
uppercase, lowercase, special characters, numbers, etc. The use
of a passphrase introduces usability rather than remembering a
random number. The passphrase can be fixed for all files or can
be changed for each file. In our case, we made it fixed for all
files in the vault. The passphrase goes through a one-way
hashing function such as MD5 or SHA-512 to produce a fixed-
length hash string then use the first 128 bits or 512 bits, for
example, as Kprv,B = x. Password-based key derivation is
common in practice and industry standards such as PKCS and
OpenPGP. In [28], a framework for the design and analysis of
password-based key derivation functions (KDFs) is provided.

Page | 188

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 2. SwiftEnc public/private key generation using ElGamal.

Afterthat, G is chosen such that: x G, x can be generated
by g to some order 1 < x < p – 1 where p is a prime number. In
our implementation, we used the BigInteger.probablePrime()
method in Java to generate a value for p. Once these
conditions are met, we can identify our public key as per
ElGamal and discard the private key, x, completely. Hence,
avoid the overhead of storing an encrypted version of the
private key; it can be generated whenever needed from hashing
the passphrase. We can also pass x to the hash function, for the
second time, and produce x1 which can be used to check the
validity of the entered passphrase in later operation, i.e.
decryption. Figure 2 illustrates this process for public/private
key generation.

One important concept to note here is that SwiftEnc doesn’t
use the public/private key pair for encrypting/decrypting assets.
Indeed, the passphrase and generation of keys don’t account for
the confidentiality of the asset by any factor. However, the
encryption/decryption depends on the asset itself as will be
discussed in the subsequent sections.

B. Seed Generation

In SwiftEnc context, the seed refers to the string of
characters that will be used to generate a symmetric key that, in
turn, will be used to obfuscate the asset which the user intends
to encrypt. However, this seed varies in length and value per
each file. The seed is the secret that we want to insure that it’s
properly protected, as obtaining the seed reveals the
confidentiality of the asset as we will see in Section III-D.

Since every file will have its own unique seed, the seed has
to be stored along with the protected asset, however, in a
confidential format. We will see in subsequent sections that the
seed is necessary to decrypt the asset and return the file to its
original state. The implementation of SwiftEnc can use any
seed generation algorithm to associate a seed to a file under the
following conditions: (a) The algorithm guarantees a sufficient
degree of pseudo-randomness, and (b) The algorithm acquires
very low probability of collision. In SwiftEnc, we create the
seed from the first block of the file to be encrypted as indicated
in Algorithm 1.

Algorithm 1. Seed creation algorithm.

C. File Obfuscation

Once the seed is generated for the perspective asset that we
intend to protect, the Symmetric Key Generation process and
file obfuscation can start immediately. Obfuscation is the core
of SwiftEnc on which the asset’s data are being randomly
scrambled to generate an encrypted file. Moreover, this
operation occurs with minimal processing power and fast
timing, hence the term Swift. To assure that SwiftEnc
accommodates larger file sizes, we use buffered streams to
process the file sequentially.

We generate a key from the seed by recursively hashing it.
Since SwiftEnc is using SHA-512, the first 512 bits (64 bytes)
of the key will be the hash of the initial seed h0. The following
64 bytes will contain the hash of the resulting hash from the
previous step, and so on. We repeat this operation until we
reach a key equal in length to the first 64 bytes multiple that is
larger than the file size. Next, we perform a regular XOR
operation between each byte of the asset and the key and
send/store the result as our encrypted file. The use of XOR
with the hash gives SwiftEnc the low processing power and
better performance over other encryption algorithms, however,
we haven’t discussed what gives it a confidentiality level.
Algorithms 2 and 3 demonstrate these processes. The
illustration of the prototype operation is depicted in Fig. 3. The
XOR operation is reversible in nature. So, we can use this
property to decrypt the file and retrieve the original cleartext
file. By only having the encrypted file and the seed, we can
generate the same key by hashing the seed recursively and
XORing it with the file, thus, revealing our file back.

Data: File to encrypt (FE), Initial seed size (SS)

Result: Initial seed (h0)

FS = FE.getSize();

count = 0;

while count < min(SS, FS) do

 h0[count] = FE.getNextByte();

 h0[count+1] = SecureRandom();

 count += 2;

end

while count < SS do

 h0[count] = SecureRandom();

 count++;

end

return h0;

Page | 189

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Algorithm 2. Symmetric key generation for file encryption.

 Algorithm 3. File obfuscation

Fig. 3. Main steps for generating symmetric key and encrypting the data file.

D. Seed Cryptography

As we have seen, the seed is generated by extracting its
value from the file and a pseudo-random number generator.
The seed is also used to create a key that is equal in length to
the length of the file. Once we obtain the key, we can encrypt
our asset immediately and discard the key completely.
However, obtaining the seed compromises the security of the
system and redeems the asset unsecured. Once an unauthorized
entity obtains the seed, our asset is no longer protected.

To thwart against such threat, the owner of the asset should
provide a layer of protection over the seed. SwiftEnc ensures
that this layer is implemented by encrypting the seed using any
well-known Asymmetric Encryption algorithm; in our case we
have chosen ElGamal as discussed above using Km from Eq.
(3):

0 0. modmh h K p

The encrypted seed, h’0, should be stored next to the file,
appending/pre-appending it to the file, or in a data-house that
could link it to the file. Upon decryption, we should retrieve the
seed with respect to the file, decrypt it using ElGamal, then
initiate the de-obfuscation as stated in Section III-C. To decrypt
the seed, ElGamal has to calculate Km at the receiver then use
its inverse in the cyclic group G to decrypt the seed:

 ,

,() modprv BK

m pub AK K p

 1

0 0. modmh h K p

IV. EVALUATIONS

We have developed the algorithm described above and built
a prototype for a security vault as a central location for
managing encrypted files and passwords. Figure 4 shows part
of the user interface for the main menu and the security vault.
We report some empirical experiments to benchmark SwiftEnc
with another password-based hybrid encryption algorithm
(Rijndael-RSA) [29]. Rijndael-RSA encrypts and decrypts
using 256-bit Rijndael key where the key is encrypted using
1024-bit RSA key, which is password-encrypted. All
implementations were conducted in Java and experiments were
run on the same machine using the specifications shown in
Table I.

TABLE I. EXPERIMENTS SPECIFICATION

OS 64 bit Windows 7 Professional

Processor Intel Core i5-33M CPU 2.7GHz

Memory 4 GB

Implementation Java 1.7

The algorithms are tested on three files of different sizes and
content types. The first file is the readme file that comes with
eclipse and contains HTML. The second file is the PDF of an
initial version of this paper. The third file is MP4 file

64 bytes 64 bytes 64 bytes

64 bytes 64 bytes 64 bytes

32 count =1

SHA-512 SHA-512 SHA-512 SHA-512

…

…

…

count = n

SecureRandom

Output: Symmetric key (Ks)

Input: Data File

Data File

Encrypted File

32

Data: File to encrypt (FE), Key (Ks)

Result: Encrypted file (EF)

FS = FE.getSize();

i = 0;

while i < FS do

 EF[i] = FE[i] Ks[i];

 i ++;

end

Data: File to encrypt (FE), Initial Seed (h0)

Result: Symmetric encryption key (Ks)

FS = FE.getSize();

SS = h0.getSize();

count = ceil(FS / SS);

key0 = hash(h0); // key0 subscript means block

Ks = key0[0..SS]; take the first SS bytes

i = 1;

while i < count do

 keyi = hash(keyi-1 i);

 Ks = Ks || keyi[0..SS]; // concatenation

 i ++;

end

return Ks;

Combine

Page | 190

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

corresponding to “The Flash 2014 Season 1 Episode 01”. The
performance measures are reported in terms of: average time
and speed. The time includes I/O reading and writing times, the
key generation, encryption and decryption. The speed is
calculated as size in MB divided by time in seconds. Table II
illustrates the average times in seconds for five runs as well as
the speed.

(a) Main menu interface

(b) Vault interface

Fig. 4. Screenshot a security vault protype based on SwiftEnc for encryption

and decryption.

TABLE II. COMPARISION OF AVERAGE OVERALL TIME (SEC) AND SPEED

(MB/SEC) APPROX TO 4 DECIMAL DIGITS

Input File SwiftEnc Rijndael-RSA

Size (MB) Type Time Speed Time Speed

0.1 HTM 0.2444 0.4092 2.9204 0.0342

0.773 PDF 0.6598 1.1716 14.6696 0.0527

272 MP4 187.7854 1.4485 4925.0770 0.0552

V. CONCLUSION

This paper discussed the trade-offs of encryption
algorithms and how they can impose a barrier on the value of
assets due to their relatively high processing time. We
introduced a new hybrid algorithm, SwiftEnc, and security
vault prototype, that can be used to overcome this barrier and
allow for rapid encryption with low processing power. The
vault prototype provides a central local store for securely
managing keys and encrypted files. The framework can be
customized with different cryptographic functions to
accommodate various security standards enforced by an
organization. SwiftEnc showed better performance when

compared to another algorithm. When used for communication
over the Internet, message exchanges between the sender and
the receiver can also include timestamp and nonce to counter
replay attacks.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by King Fahd University of Petroleum & Minerals
(KFUPM) during this work.

REFERENCES

[1] D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 2005.

[2] A. Nadeem and M. Y. Javed, “A performance comparison of data
encryption algorithms,” in Proc. IEEE International Conference on
Information and Communication Technologies, 2005, pp. 84–89.

[3] S. Latha, K. Raju, and S. Santhi, “Overview of dropbox encryption in
cloud computing,” Transactions on Engineering and Sciences, vol. 2, no.
3, pp. 27–32, 2014.

[4] A. Al-Hasib and A. Haque, “A comparative study of the performance
and security issues of AES and RSA cryptography,” in Proc. Third
International Conference on Convergence and Hybrid Information
Technology, ICCIT ’08, vol. 2, Nov 2008, pp. 505–510.

[5] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 2010.

[6] A. W. Dent, “Hybrid cryptography,” Information Security Group,
University of London, Tech. Rep., 2005.

[7] The International PGP Home Page. [Online]. Available:
http://www.pgpi.org/

[8] F. P. Miller, A. F. Vandome, and J. McBrewster, Advanced Encryption
Standard. Alpha Press, 2009.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultralightweight
block cipher,” in Cryptographic Hardware and Embedded Systems -
CHES 2007, Lecture Notes in Computer Science, vol. 4727. Springer,
2007, pp. 450–466.

[10] Y. Wang, K.-W. Wong, X. Liao, and G. Chen, “A new chaos-based fast
image encryption algorithm,” Applied Soft Computing, vol. 11, no. 1,
pp. 514–522, 2011.

[11] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in Proc. 38th Annual Symposium on
Foundations of Computer Science, 1997, pp. 394–403.

[12] B. Verkhovsky, “Cubic root extractors of gaussian integers and their
application in fast encryption for time-constrained secure
communication,” Int. J. of Communications, Network and System
Sciences, vol. 4, pp. 197–204, 2011.

[13] S. Hohenberger and B. Waters, “Attribute-based encryption with fast
decryption,” in Public-Key Cryptography–PKC 2013, Lecture Notes in
Computer Science. Springer, 2013, vol. 7778, pp. 162–179.

[14] D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and D.-G. Lee,
“LEA: A 128-bit block cipher for fast encryption on common
processors,” in Information Security Applications. Springer, 2014, pp. 3–
27.

[15] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A
survey of lightweight-cryptography implementations,” IEEE Design &
Test of Computers, vol. 24, no. 6, pp. 522–533, 2007.

[16] B. Adida, S. Hohenberger, and R. L. Rivest, “Lightweight encryption for
email,” in USENIX Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), 2005.

[17] E. Choo, J. Lee, H. Lee, and G. Nam, “SRMT: A lightweight encryption
scheme for secure real-time multimedia transmission,” in Proc.
International Conference on Multimedia and Ubiquitous Engineering,
2007, pp. 60–65.

Page | 191

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0028 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

[18] D. Engel and A. Uhl, “Lightweight JPEG2000 encryption with
anisotropic wavelet packets,” in Proc. IEEE International Conference
on Multimedia and Expo, ICME ’06, 2006, pp. 2177–2180.

[19] H. H. Ngo, X. Wu, P. D. Le, C. Wilson, and B. Srinivasan, “Dynamic
key cryptography and applications,” International Journal of Network
Security, vol. 10, no. 3, pp. 161–174, 2010.

[20] H. Jo, S.-T. Hong, J.-W. Chang, and D. H. Choi, “Data encryption on
gpu for high-performance database systems,” Procedia Computer
Science, vol. 19, pp. 147–154, 2013.

[21] ——, “Offloading data encryption to GPU in database systems,” The
Journal of Supercomputing, pp. 1–20, 2014.

[22] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in Proc. IEEE Conference on
High Performance Extreme Computing (HPEC), 2012, pp. 1–5.

[23] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Advances in Cryptology. Springer, 1985, pp.
10–18.

[24] http://www-01.ibm.com/software/data/infosphere/

[25] http://www.oracle.com/technetwork/database/options/advanced-
security/index-099011.html

[26] https://msdn.microsoft.com/en-us/library/bb934049.aspx

[27] http://www.vormetric.com/

[28] F. F. Yao, and Y. L. Yin, “Design and analysis of password-based key
derivation functions,” in Topics in Cryptology, Springer, 2005, pp. 245-
261.

[29] J. Garms and D. Somerfield, Professional Java Security. Wrox. 2001.

Page | 192

	Cloud Computing
	CR-ICIT15247
	CR-ICIT15315
	CR-ICIT15470
	CR-ICIT15490

