
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Bridging the Gap between Modeling of Mobile

Agent-based Systems and Semantic Web using

Meta-Modeling and Graph Grammars

Aissam Belghiat1,2
1Département d’informatique, Université 20 Août 1955-Skikda

Skikda 21000, Algérie

belghiatissam@gmail.com

Allaoua Chaoui2
2MISC Laboratory, Department of Computer Science, University of Constantine2

Constantine 25000, Algeria

a_chaoui2001@yahoo.com

Ali Aldahoud

Al-Zaytoonah University of Jordan,

P.O. Box 130, Amman 11733,Jordan

aldahoud@zuj.edu.jo

Abstract—Recently, the mobile agent-based paradigm has received more attention especially in distributed systems where it

provides multiple solutions to several problems which can’t be resolved by the object-based paradigm. Unfortunately, this paradigm

lacks the interconnection with semantic web standards such as the language OWL (Ontology Web Language) which make it far from

profiting from research results and advances in this area. We try in this paper to bridge the gap between the two domains by proposing

an integrated approach for modeling mobile agent-based software systems using a transformation of mobile class diagrams into OWL

ontologies. The developed approach allows interconnection of mobile agent and Semantic Web technologies can be used in a mobile

agent-based application where such interconnection is needed. We use the meta-modeling and graph grammars tool AToM3.

Keywords—M-UML; OWL; MDA; Graph Transformation; AToM3

I. INTRODUCTION

Mobile agent-based software systems are increasingly very
complex; actually the development of such systems is a
difficult task since the great number of constraints that are
evolved during the development process such as the mobility
and security. Modeling and designing of mobile agent-based
software systems have received important attention in the last
years to deal with previous problems [18]. M-UML [19] has
been introduced as an extension of UML [7] for modeling
mobile agent-based systems [26]. Researchers have tried to
relate mobile agent paradigm to the object oriented paradigm
using the standard of object oriented modeling to model mobile
agents by introducing to it the appropriate artifacts in order to
support the new paradigm.

In other side, the ontologies provide explicit and formal
specifications of shared conceptualizations; they are described
formally using description logics implemented in OWL
language. The knowledge generated from an M-UML diagram

during the software development process is a valuable asset in
particular in the analysis and design tasks. In order to profit
from it, they must be represented and stored in ontologies and
will be used for reasoning on mobile agent based software
systems.

In this paper, which extends our previous work [20], we
propose a set of rules for transforming mobile class diagrams
into ontologies described in OWL language in order to profit
from the power of ontologies. So, the knowledge described by
those diagrams can be reused, shared and linked with other
information. The meta-modeling tool AToM3 is used to create
meta-models for mobile class diagram and OWL models. A
graph grammar is proposed for automatic transformation
between the two formalisms.

The rest of the paper is organized as follows. In Section 2,
we present some related works. In Section 3, we present some
basic notions about M-UML, OWL, and graph grammars. In
Section 4, we describe our approach of transforming M-UML

Page | 134

mailto:aldahoud@zuj.edu.jo

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

class diagrams to OWL ontologies. In Section 5, we illustrate
our approach through an example. Finally concluding remarks
and perspectives are presented in Section 6.

II. RELATED WORKS

Several works exist in the literature in the context of
extracting ontologies from UML diagrams. In [14] the authors
have proposed a transformation of UML towards DAML by
showing similarities and differences between the two parts of
the translation. In [15] the authors have proposed a
transformation of a profile UML OUP (Ontology UML Profile)
towards an ontology OWL. In [6], the OMG remarks the
interest of such subject, it then immediately proposed the ODM
which provides a profile for writing RDF and OWL within
UML. The ODM also includes partial mappings between UML
and OWL. It should be noted that several works are performed
as answer to the call of the OMG and gathered in the ODM
and it is impossible to evoke all of them here. In [9], an
implementation of the ODM using ATL language is presented.
In [5], the author has applied a style sheet on a XMI file which
represents a model of a class diagram to generate an ontology
OWL DL represented as RDF/XML format. In [16], a detailed
comparison between UML and OWL has been developed.

On the other hand, AToM3 has been adopted to be a very
powerful tool which the meta-modeling and the
transformations between formalisms. In fact, in [21] the
authors have proposed a formal framework and a tool for the
specification and verification of G-Nets models using graph
transformation. In [20] the authors have developed an AToM3
based approach for the automatic generation of OWL
ontologies from UML diagrams. In [23], the authors have
developed an approach for modeling and analysis of mobile
agent-based software systems by transforming M-UML
statecharts models to nested nets models. In [22], an approach
for transforming mobile activity diagrams to nested Petri nets
models has been proposed. Also in [1, 2, 3, 17, 18, and 25] we
can found treatment and translation of multiple UML diagrams.
In these works the Meta modeling allows visual modeling and
graph grammar allows the transformation among them.

In contrast to all these previous works, we have the first
who think to relate the modeling of mobile agent-based
systems and semantic web by translating a profile of UML
class diagram for mobile systems into the OWL.

III. BACKGROUND

The main contribution of the paper is to develop an
integrated environment based on meta-modeling and graph
grammars for modeling and analysis of mobile agent based
software systems which are modeled as a set of mobile class
diagrams. We recall here some notions about M-UML and
OWL.

A. Mobile Class Diagram

A M-UML Class Diagram [19] has been introduced to
describe the static structure of a mobile system by showing all
relationships between different types of classes. Mobile
objects/agents are created by the instantiation of a mobile class
shown with a box (M). A class inherits the mobility by the

relation of inheritance while not necessarily true by
aggregation relation. An affected class shown with a dashed
box (M) is a class that contains methods (behavior) which
communicate with other mobile classes. A remote class shown
with a dashed box (R) is a class that contains methods
(behavior) which communicate with a remote mobile
object/agent. A mobile object/agent invokes methods which
will be labeled depending on the location of it with either (M)
or (R) and a class that includes the two types will show with
dashed boxes (M) and (R). Figure 1 [19] shows an example of
a mobile class diagram.

Fig. 1. A mobile class diagram.

B. OWL

OWL (Ontology Web Language) is a language for
representing ontologies by defining the concepts of a domain
and the relations between them what will allow automatic
reasoning about the domain knowledge using their formal
semantics. OWL1 offers three sublanguages with increasing
expression oriented for specific communities of developers and
users: OWL Lite, OWL DL, and OWL Full [10] whereas
OWL2 defines three new profiles: OWL2 EL, OWL2 QL, and
OWL2 RL [13].

C. Graph Grammars

Graph transformation was largely used for the expression of
model transformation [4]; particularly, transformations of
visual models can be naturally formulated by graph
transformation, since the graphs are well adapted to describe
the fundamental structures of models [17]. The set of graph
transformation rules constitutes what is called the model of
graph grammar. A graph grammar is a generalization, for
graphs, of Chomsky grammars. Each rule of a graph grammar
is composed of a left hand side (LHS) pattern and of a right-
hand sided (RHS) pattern. Therefore, the graph transformation
is the process to choose a rule among the graph grammar rules,
apply this rule on a graph pattern that matches the LHS pattern
to produce the RHS pattern, and reiterate the process until no
rule can be applied [4]. We have adopted the AToM3 tool [1]
which is a visual tool for model transformation to implements
our approach. In the next sections, we will discuss how we use
AToM3 to meta-model mobile class diagrams and how to
generate OWL models by applying a graph grammar.

Page | 135

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

IV. OUR APPROACH

A. Overview

Mobile agent-based software systems are very difficult to
design and to implement, although of this, we are urgently and
still need this type of software systems to resolve some huge
problems in different domains that the object oriented
paradigm could not deal with them. We propose in this paper
integrated approach M-UML class diagram/OWL ontology for
modeling and analysis of mobile agent-based software systems
by direct transformation of the mobile class diagram to OWL
ontology. A mobile class diagram describes statically and in a
very rich way the entities evolved in a mobile agent-based
software system and all relationships among them. This
ontology generated contains the knowledge extracted from the
M-UML diagram and will be used for reuse purpose,
knowledge sharing, conversation, integration and reasoning on
mobile agent-based software systems.

The architecture of the proposed approach (Figure 2) is
based on meta-modeling and graph grammars. For the
realization of this application, we have to propose a meta-
model of mobile class diagrams that allows us to edit visually
mobile class diagrams on AToM3 canvas. In addition, we have
to develop a graph grammar made up of several rules which
allows transforming progressively all what is modeled on the
canvas towards an OWL ontology in RDF/XML format stored
in a disk file. The graph grammar is based on transformation
rules; each rule deals with some constructs in the left hand side
(LHS) to transform them to others constructs in the right hand
side (RHS). For ontology, the choice among OWL profiles is
made on OWL DL because it places certain constraints on the
use of the structures of OWL such as separation between
classes, data types, data type properties, object properties,
annotation properties, ontologies properties, individuals, data
values, and integrated vocabulary [11][12].

Fig. 2. Architecture of the proposed approach.

B. Transformation rules

We propose a set of rules to transform classes,
enumerations, associations, roles, dependencies, association
classes, and all the elements of a mobile class diagram that are
important to store in the OWL ontology. For lack of space, we

have presented class (and their extensions) transformation rules
in table 1.

Concerning the transformation of data types, all data types
used in M-UML are transformed into XML schema (XSD) data
types because OWL uses the majority of the datatypes
integrated into XML schema. The calls of these data types are
done through data type URI address reference
http://www.w3.org/2001/XMLSchema[11]. The instances of
the primitive types used in M-UML itself include: Boolean,
Integer, String, Unlimited Natural[7].

TABLE I. TRANSFORMATION RULES.

<owl:DatatypePropertyrdf:ID="isRemote">

<rdfs:domainrdf:resource="#Remote-ClassName"/>

<rdfs:rangerdf:resource="http://www.w3.

org/2001/XMLSchema#boolean"/>

</owl:DatatypeProperty>

<owl:Classrdf:ID="Remote-ClassName">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onPropertyrdf:resource= "#isRemote"/>

<owl:mincardinalityrdf:datatype="http://www.w3.

org/2001/XMLSchema#nonNegativeInteger">1

</owl:mincardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>…

 A remote class is represented by a data type property and a class OWL. A

remote class can contain behaviors affected by multiple remote mobile

agent, we use the restriction mincardinality to indicate this.

<owl:DatatypePropertyrdf:ID="isMobile">

<rdfs:domainrdf:resource="#Mobile-ClassName"/>

<rdfs:rangerdf:resource="http://www.w3.

org/2001/XMLSchema#boolean"/>

</owl:DatatypeProperty>

<owl:Classrdf:ID="Mobile-ClassName">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onPropertyrdf:resource= "#isMobile"/>

<owl:cardinalityrdf:datatype="http://www.w3.

org/2001/XMLSchema#nonNegativeInteger">1

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>…

 A mobile class is represented by a data type property and a class OWL. A

mobile class can contain exactly one property concerning the mobility of

their objects.

M-UML to OWL

Remote Class

Mobile Class

Affected Class

ClassName

M

ClassName

R

Page | 136

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

<owl:DatatypePropertyrdf:ID="isAffected ">

<rdfs:domainrdf:resource="#Affected-ClassName"/>

<rdfs:rangerdf:resource="http://www.w3.

org/2001/XMLSchema#boolean"/>

</owl:DatatypeProperty>

<owl:Classrdf:ID="Mobile-ClassName">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onPropertyrdf:resource= "#isAffected"/>

<owl:mincardinalityrdf:datatype="http://www.w3.

org/2001/XMLSchema#nonNegativeInteger">1

</owl:mincardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>…

An affected class is represented by a data type property and a class OWL.

An affected class can contain behavior (methods) that is affected

(communicating with) by mobile objects, we use the restriction

mincardinality to indicate this.

C. Meta-model of UML Class diagram

To build M-UML class diagrams in AToM3, we have to
define a meta-model for them. Our meta-model is composed of
two classes and four associations developed by the meta-
formalism (CD_classDiagramsV3), and the constraints are
expressed in Python [8] code (Figure 3).

Fig. 3. Mobile class diagram meta-model

After building our meta-model, it remains only its
generation. The generated meta-model comprises the set of
classes modeled in the form of buttons which are ready to be
employed for a possible modeling of a class diagram. Figure 4
shows an example of a mobile class diagram of a mobile voting
system [19] modeled in our mobile class diagram environment.

Fig. 4. Generated tool for mobile class diagram.

D. The Proposed Graph grammar

To perform the transformation between class diagrams and
OWL ontologies, we have proposed a graph grammar
composed of an initial action, ten rules, and a final action. For
lack of space, and because we used python code to specify the
transformation in the condition and action of each rule, we
have not presented all the rules.

Initial Action: Ontology header

Role: In the initial action of the graph grammar, we create a

file with sequential access in order to store generated OWL

code. To do that, we used Python. We begin by writing the

ontology header which is fixed for all generated ontologies

(Figure 5).

Fig. 5. Ontology header definition.

Final Action: the end of ontology

Role: In the final action of the graph grammar, we end our

ontology. So, we will have to open our file and to add

‘</rdf:RDF>’ (Figure 6).

ClassName

M

Page | 137

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 6. End of ontology.

Rule 1: Class transformation

Name: class2class

Priority: 1

Role:This rule transforms an M-UML class (all type of classes)

towards an OWL class (cf. Table 2). In the condition of the rule

we test if the class is already transformed. If not yet, we reopen

the OWL file to add the adequate OWL code of this class in the

action of the rule.

TABLE II. TRANSFORMATION OF DIFFERENT TYPES OF M-UML

CLASSES.

V. EXAMPLE

Let us apply our approach on the mobile class diagram
illustrated in figure 4which is borrowed from [19]. It models a
mobile voting system, where a mobile agent VC (vote
collector) gets a list of voters from a stationary agent VM (vote
manager) and visits the VO’s (voters) stations those already
have the list of candidates to collect votes and return them to
the VM that mandated the VC in action. It should be noted that
this example does not claim to be exhaustive but it gathers
most important elements of a mobile class diagram such as:
mobile class, affected class, remote class, association, attributes
and different types of methods. By applying our graph
grammar on this example, we have first obtained the
intermediate graphs shown in figure7.

Fig. 7. Intermediate graph

Then we have obtained the graph of figure8 after the
termination of execution of the graph grammar.

Condition

:=

Action

Page | 138

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 8. Class diagram after execution

In parallel, there is an automatic generation of the file
containing OWL code stored on hard disc validated and
visualized using SWOOP [24] (Figure 9, 10, 11):

Fig. 9. The OWL ontology classes.

Fig. 10. The OWL ontology properties.

VI. CONCLUSION

The objective of this work is to develop an integrated
environment for modeling and analysis of mobile based
software systems by the transformation of M-UML class
diagrams to OWL ontologies.The approach has been
implemented using the AToM3tool. For the realization of this
application we have developed a meta-model for M-UML class
diagrams, and a graph grammar named “M-UML2OWL”
composed of several rules which enables us to transform a
mobile class diagram to an OWL ontology stored in a hard disk
file. The generated ontology will be used for reuse purpose,
knowledge sharing, conversation, integration and reasoning on
mobile agent-based software systems.

In future work, we plan to generalize the extraction of
OWL ontologies from others M-UML diagrams since they
represent different aspects of the systems. We plan also to
realize this transformation using other graph transformation
tools such as Triple Graph Grammars [27] which provide
bidirectional transformations.

REFERENCES

[1] AToM3. Home page: http://atom3.cs.mcgill.ca.2002.

[2] J. D. Lara, H. Vangheluwe, “Computer aided multi-paradigm modeling
to process petri-nets and statecharts,” International Conference on Graph
Transformations (ICGT), Lecture Notes in Computer Science, vol. 2505,
pp. 239-253, Springer-Verlag, Barcelona, Spain, 2002.

[3] J. D. Lara, H. Vangheluwe, “Meta-modeling and graph grammars for
multi-paradigm modeling in AToM3,” Software and Systems Modeling,
Vol. 3, pp. 194-209, Springer-Verlag, Special Section on Graph
Transformations and Visual Modeling Techniques, 2004.

[4] G. Karsai, A. Agrawal, “Graph Transformations in OMG’s Model-
Driven Architecture,” Lecture Notes in Computer Science, Vol 3062,
243-259, Springer Berlin /Heidelberg, juillet 2004.

[5] Sebastian Leinhos, http://diplom.ooyoo.de, 2006.

[6] OMG, “Ontology Definition Metamodel”, V1.0, http://www. omg.
org/spec/ODM/1.0, May 2009.

[7] OMG, “OMG Unified Modeling Language, Infrastructure,
v2.3”,http://www.omg.org/spec/UML/2.1.2 /Infrastructure/ PDF, May
2010.

[8] Python. Home page: http://www.python.org.

Page | 139

http://www/
http://www.omg.org/spec/UML/2.1.2

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

[9] SIDo Group, “ATL Use Case - ODM Implementation (Bridging UML
and
OWL),”http://www.eclipse.org/m2m/atl/usecases/ODMImplementation/
, 2007.

[10] D. L. McGuinness, F. V. Harmelen, “OWL Web Ontology Language-
Overview,” http://www.w3.org/TR/ 2004/REC-owl-features-20040210/.
W3C Recommendation 10 February 2004.

[11] M. K. Smith, C. Welty, D. L. McGuinness, “OWL Web Ontology
Language–Guide”, http://www.w3.org/TR/2004/REC-owl-guide-2004
0210. W3C Recommendation 10 February 2004.

[12] M. Dean, G. Schreiber, S. Bechhofer, F.V. Harmelen, J. Hendler, I.
Horrocks, D. L. McGuinness, P. F. Patel-Schneider, L. A. Stein, “OWL
Web Ontology Language-Reference,”, http://www.w3.org/TR/2004/
REC-owl-ref-20040210. W3C Recommendation 10 February 2004.

[13] W3C OWL Working Group, “OWL 2 Web Ontology Language
Document Overview,” http://www.w3.org/TR/2009/REC-owl2-
overview-20091027. W3C Recommendation 27 October 2009.

[14] K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, W. S.
Holmes, J. Letkowski,M. L. Aronsonl, “Extending UML to Support
Ontology Engineering for the Semantic Web,” (pp. 342-360). Springer
Berlin Heidelberg. 2001.

[15] D. Gašević, D. Djurić, V. Devedžić, V. Damjanović, “Converting UML
to OWL Ontologies,” In : Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters. ACM, p.
488-489. 2004.

[16] K. Kiko, C. Atkinson, “A Detailed Comparison of UML and OWL,”
Technical Report, Reihe Informatik, TR-2008-004,2008.

[17] R.Bardohl,H. Ehrig, J. De Lara, G. Taentzer,"Integrating Meta
Modelling with Graph Transformation for Efficient Visual Language
Definition and Model Manipulation,"Lecture Notes in Computer Science
2984, pp.: 214-228. 2004.

[18] H. Mouratidis, J. Odell, G. Manson, “Extending the Unified Modeling
Language to Model Mobile Agents,”Proceedings Agent Oriented
Methodologies Workshop, Annual ACM Conference on Object Oriented
Programming, Systems, Languages (OOPSLA), Seattle – USA, 2002.

[19] K. Saleh, C. El-Morr, “M-UML: an extension to UML for the modeling
of mobile agent-based software systems,” Journal of Information and
Software Technology, ELSEVIER, Vol 46, 2004, pp. 219–227.

[20] A. Belghiat, M. Bourahla, “An Approach based AToM3 for the
Generation of OWL Ontologies from UML Diagrams,”International
Journal of Computer Applications (0975 – 8887) Volume 41– No.3,
March 2012.

[21] E. Kerkouche and A. Chaoui, “A Formal Framework and a Tool for the
Specification and Analysis of G-Nets Models Based on Graph
Transformation,”International Conference on Distributed Computing
and Networking -CDCN’09-, LNCS 5408, pp. 206–211, Springer-
Verlag Berlin Heidelberg, India, 3-6 January, 2009.

[22] F. Guerrouf, A. Chaoui, A. Aldahoud, “A graph transformation
approach of mobile activity diagram to nested Petri nets,” IJCAET 5(1):
44-57 (2013).

[23] M. R. Bahri, A. Hettab, A. Chaoui, and E. Kerkouche, “Transforming
Mobile UML Statecharts Models to Nested Nets Models using Graph
Grammars: An Approach for Modeling and Analysis of Mobile Agent-
Based Software Systems,” in SEEFM ‘09, IEEE Computer Society
Washington, pp.33-39, 2009.

[24] SWOOP. Home page: http://www.mindswap.org /2004/SWOOP.

[25] E. Kerkouche, A. Chaoui, E. Bourennane, and O. Labbani, “Modeling
and verification of dynamic behaviour in UML models, a graph
transformation based approach,“ proceedings of SEDE’2009, Las Vegas,
Nevada, USA, 22-24 June 2009.

[26] A. Belghiat, A. Chaoui, M. Maouche, M. Beldjehem, “Formalization of
Mobile UML Statechart Diagrams using the π-calculus: An Approach
for Modeling and Analysis,”In G. Dregvaite and R. Damasevicius
(Eds.): ICIST 2014, CCIS 465, pp. 236–247. Springer.

A. Schurr, “Specification of Graph Translators with Triple Graph
Grammars,” In G. Tinhofer, editor, WG’94 20th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, volume 903 of Lecture

Notes in Computer Science (LNCS), pages 151–163, Heidelberg, 1994.
Springer Verlag.

Page | 140

http://www.w3.org/TR/
http://www.w3.org/TR/2004/
http://www.mindswap.org/

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0020 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 11. The generated OWL ontology.

Page | 141

	Artificial intelligence_largerSize
	CR-ICIT15162
	CR-ICIT15178
	CR-ICIT15189
	CR-ICIT15191
	CR-ICIT15201
	CR-ICIT15203
	CR-ICIT15226
	CR-ICIT15234
	CR-ICIT15243
	CR-ICIT15244
	CR-ICIT15251
	CR-ICIT15309
	CR-ICIT15326
	CR-ICIT15377
	CR-ICIT15388
	CR-ICIT15391
	CR-ICIT15404
	CR-ICIT15430
	CR-ICIT15457
	CR-ICIT15465
	CR-ICIT15480
	CR-ICIT15571
	CR-ICIT15573
	CR-ICIT15581

