
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Experiments with Simulated Humanoid Robots

Hans-Dieter Burkhard

Humboldt University Berlin

Institute of Informatics

Berlin, Germany

nao-team@informatik.hu-berlin.de

Abstract— Experimenting with real robots is limited by the available resources: Complex hardware is costly, and it needs time and

experience for setup and maintenance. Simulated robots can be used as alternative. Our RoboNewbie project is a basic framework for

experimenting with simulated robots. It serves as an inspiration for beginners, and it provides room for many challenging experiments.

The RoboNewbie agents run in the simulation environment of SimSpark RCSS, the official RoboCup 3D simulator, where the

simulated robots are models of the humanoid Robot NAO of the French Company Aldebaran. Different example agents provide easily

understandable interfaces to simulated sensors and effectors of the robot as well as simple control structures. The framework has been

successfully used at different courses where the participants needed only few hours to understand the usage of the framework and to

develop own agents for different tasks.

Keywords— Robotics, e-Learning, Simulated Robots, RoboCup

I. INTRODUCTION

Understanding grows with active commitment: to "do"
something, to master it, provides a deeper understanding.
Experiencing with own experiments is an important
prerequisite for studies in Robotics and Artificial Intelligence.
But experimenting with real robots is difficult not only because
of expensive hardware. Maintaining the robots and set ups for
experiments are very time consuming even for experienced
people. Experiments at home as needed for e-learning would
require a deep technical understanding by the students, i.e.
experiences that they are just going to learn. So it is not
surprising that simple hardware is still broadly used in robot
experiments, hardware which is far behind the recent technical
developments, not to talk about e.g. complex humanoid robots.
The collection of papers [1] can be understood as an illustration
of that statement.

Simulated robots in simulated environments are widely
used as an alternative for complex hardware. They are often
simulations of existing robots and serve for preliminary
programming, tests and evaluations. Because of the “reality
gap”, the transfer of programs from simulated to real robots is a
non-trivial task [2]. Reducing the reality gap needs increasing
efforts in the simulation and leads again to complex systems
which need more efforts by the user. The trade-off must be
handled carefully for systems better suited for beginners.

 The RoboCup community has more than 15 years of
experiences with real and simulated robots in the field of
soccer playing robots [3]. Soccer playing robots have been
established as a challenging test field for the progress in
scientific research and technical developments. Robots have to
be able to control their bodies and their motions according to
soccer play, they must perceive a dynamically changing

environment and they have to choose successful actions out of
many options in real time. They have to cooperate with team
mates and to pay attention to opponents. Several thousand
scientists and students are participating in the annual RoboCup
competitions in different leagues with different types of real
and simulated robots. The humanoid robot Nao of the French
Company Aldebaran [4] is used in the Standard Platform
League, while its simulated version is used in the 3D-
Simulation League. The official SimSpark RoboCup 3D
Soccer Simulation (SimSpark RCSS) [5] provides an excellent
environment for experiments with simulated complex robots
(see Section III). It provides a physical simulation using ODE
[6] for the body dynamics of the robot Nao and the soccer
environment.

Our RoboNewbie Project is a basic framework based on
JAVA for the development of simulated humanoid robots. It
provides easily understandable interfaces to simulated sensors
and effectors of the robot as well as a simple control structure.
It runs in the environment of the SimSpark RCSS, thus it can
but need not be used for soccer playing robots. Users can
develop their own motions, e.g. for dancing, gymnastics or
kicking a ball.

The RoboNewbie Project implements some kind of
''minimalistic approach'' with respect to Robotics. Users are
able to start without special knowledge about robots. They can
learn by their own experiences about the basic concepts of
perception, motion, control, synchronization, and integration.
All related program code in RoboNewbie is understandable
from simple principles without further knowledge. That
concerns the structure of the code as well as the underlying
computational methods. As soon as users learn more about
Robotics, they will be able to extend the programs accordingly,
e.g. concerning complex motions or world modeling.

Page | 81

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Moreover, the framework has also good potentials for the
research on foundations. e.g., on computational models as well
as on different problems in cognitive science. It can be useful
in verifying models and in gathering large data sets for
experiments in data mining.

The paper is organized as follows: After an overview about
the concept and the downloadable resources of the
RoboNewbie project, it gives a short overview about SimSpark
RCSS. The communication between the RoboNewbie agents
and SimSpark RCSS is described next. The main part of the
paper in Section V discusses the details of the RoboNewbie
framework, and the paper ends with results of practical
evaluations and conclusions.

II. THE ROBONEWBIE PROJECT AND ITS RESOURCES

The main goal of the RoboNewbie Project is to provide an
uncomplicated starting point to the programming of complex
robots with minimal requirements and pre-knowledge. The
users are only supposed to have some programming
background (Java) and some technical/mathematical
understanding. More knowledge about Robotics can be
provided in parallel to the exercises with RoboNewbie, e.g. in
introductory tutorials (as was already done) or by e-Learning
material.

The objective behind RoboNewbie is the realization of the
following requirements:

 Holistic view on robots: For beginners, it is more appealing
to see a robot behave like a human than to test and
calibrate the behavior of a sensor. Of course, when dealing
with more complex tasks, users will experience the need to
have better knowledge about the usage of sensors and
actuators, and then they may draw their own conclusions.

 Motivating scenario: Application fields from daily life with
known properties and rules are well suited. Robots which
imitate human skills are especially motivating.

 Scalable tasks: Inexperienced users should have no
difficulties to perform first steps with own experiments
and later move to more complex tasks with unlimited
challenges.

 Low requirements: The usability would be restricted if
people need pre-knowledge on Robotics or if they are
supposed to have deep knowledge in hardware and
software. Basic programming skills and interests in
mathematics and natural sciences should be sufficient.

 Low costs: The costs of a learning system include money
and efforts for purchase, set up, and maintenance,
respectively. They should be as low as possible to permit a
broad usage.

The users of the RoboNewbie project can find all materials
on the web page of Berlin United -- Nao Team Humboldt [7].

Besides links to RoboCup, Nao (Aldebaran) and the
SimSpark-Wiki, it contains resources for download:

 Description of installation and first steps.

 Sources of RoboNewbie agents programmed in JAVA 7
and prepared for usage under Netbeans.

 “Quick start tutorial”: Introduction to the features and the
usage of the agent.

 Motion Editor for the design of Keyframe Motions (needs
JAVA 3D to be installed).

 SimSpark RoboCup 3D Soccer Simulation (SimSpark
RCSS) for Windows with an introduction to SimSpark
RCSS as far as needed for RoboNewbie.

All provided code is open source. Some parts of the
RoboNewbie code use code of the RoboCup team
magmaOffenburg [8].

III. SIMSPARK ROBOCUP 3D SOCCER SIMULATION

SimSpark RCSS is developed and used by the RoboCup
community in the 3D simulation league. SimSpark is a generic
physical multi agent simulator system for agents in three-
dimensional environments. It uses the Open Dynamics Engine
(ODE [6]) for detecting collisions and for simulating rigid
body dynamics. ODE allows accurate simulation of the
physical properties of objects such as velocity, inertia and
friction.

Figure 1: SimSpark RoboCup 3D Soccer Simulation as used in the

RoboCup competitions. The field size is reduced for RoboNewbie.

Page | 82

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The Simulator SimSpark RCSS consists of two programs
(server for simulation and monitor for visualization and
interaction) together with configuration files. It models a soccer
field with the player bodies (adapted from the robot hardware
of Nao) and the ball. It also controls the rules of the soccer
game, i.e. it controls the game according to the decisions of a
simulated referee.

SimSpark RCSS can be used as open source software. This
was also an important criteria for its usage. It can be
downloaded from [5] for different platforms. A complete
preconfigured version for Windows 7 is provided for
RoboNewbie which can be downloaded from the RoboNewbie
web page [7]. Nevertheless, the RoboNewbie agents run with
SimSpark RCSS under other platforms, too.

By some small changes in the configuration files, the soccer
rules are simplified for first usages with RoboNewbie. The
SimSpark RCSS project itself is constantly evolving according
to the progress in the RoboCup initiative. The version
(compiled in June 2012) on the RoboNewbie web pages serves
for stable usage and avoids potential incompatibility problems
by new RoboCup versions.

SimSpark RCSS is documented in a Wiki [5] with
download links to the latest versions as used in the
competitions. The Wiki documentation is thought to represent
the actual state of the simulator by continuous updates. But
since different developers are volunteering in parallel on
different tasks in the project, the structure of the Wiki is not
always optimal, and occasionally some outdated information is
still present. Moreover, the Wiki is directed to experienced
users. This makes it sometimes difficult to understand for
novices. According to our experiences (cf. Section VI), the
deeper knowledge is not needed by beginners.

To provide an easy access, the downloads of the
RoboNewbie project contain an introduction to SimSpark
RCSS which refers to the provided version (as described
above). It gives the user an overview about

 Simulation using SimSpark RCSS: The SoccerServer and
the Monitor.

 The Nao-Model used by SimSpark RCSS.

 Communication between Agents and SimSpark RCSS
(with explanations of the message formats as background
information).

 \Synchronization between SimSpark RCSS and the Agents.

 Monitor and User Interface.

 Running a Game.

Actually, our description of SimSpark RCSS provides also
some ''background'' information which is not needed for
beginners, e.g. details about the message formats. Since
RoboNewbie permits an easy and direct access to the items of
messages like sensor values and motor commands, the syntax
of messages must not be known by users. Nevertheless, we

have included the information for deeper understanding of
RoboNewbie in case of interest.

IV. COMMUNICATION BETWEEN AGENTS AND SIMSPARK

SimSpark RCSS implements the soccer environment
including the bodies of the Nao robots. It models all physical
interactions between players, ball and environment. The agents
implement the control of the players.

The interface between the physical environment and the
control of real robots is constituted by sensors and actuators:
Robots perceive the world by sensory data (e.g. by vision,
accelerometer, force sensors etc.), and influence the world by
their actuators (motors, voice etc.).

In simulation (Figure 2), the sensory data are calculated by
the simulator according to the situation in the simulated world
(e.g. observable objects) and sent via messages to the agent.
Then, like a real robot, the agent can update its belief about the
situation and decide for actions it wants to perform. A real
robot would then activate its actuators (e.g. motors at the
joints) to perform the intended actions. In simulation, the agent
communicates with SimSpark RCSS again by messages which
transmit the effector commands. Both are synchronized by a
communication cycle of 20 milliseconds.

In SimSpark RCSS, the message transfer is optimized for
minimizing the server and the traffic load: All sensory data are
packed in one server message to be sent at the beginning of a
communication cycle. Vice versa, the agent can send all action
commands by a single agent message before the end of a cycle.
This trick makes it possible to run several agents together with
the simulator even on a simple laptop.

The message formats follow a special syntactic scheme
based on symbolic expressions (S-expressions). As a
consequence of collecting data into one message, the
preparation of the data in an agent needs more efforts than in a
real robot. It is a special feature of the RoboNewbie agents that
this preparation is hidden from the user: The agents provide
special getter- and setter-methods which allow the access to the
perceptor (sensor) data and the setting of effector (actuator)
commands in a similar way as in a real robot.

Figure 2: Simulation scheme with message transfer between the

agent and the simulated physical world. The simulated physical

world consists of the robot hardware and the environment. The

agent controls the actions of the robot. Messages contain data of

the preceptors (sensors) and effectors (actuators).

Page | 83

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The interaction between the server and the agents works as
follows (see Figure 3):

1. At the beginning of a cycle at a time t, the server sends
individual server messages with sensations to the agents.

2. During this cycle, the agents can decide for new actions
depending on their beliefs about the situation.

3. Before the end of this cycle, the agents should send their
agent messages to the server for desired actions.

4. The server collects the messages of all agents and
calculates the resulting new situation (poses and locations
of the players, ball movement etc.) according to the laws
of physics and the rules of the game. This is done during
the following cycle at time t+1, i.e., the server message
sent at the beginning of this cycle regards the situation
calculated in the previous cycle at time t. We have a
reaction delay as in reality (see Figure 3).

5. At the beginning of the subsequent cycle, at time t+2, the
sensor data in the server message is based on the effects of
the actions at time t+1 which were chosen by the agent
according the information from time t.

A special feature of SimSpark RCSS is the use of so-called
perceptors instead of sensors. The perceptor data can be
regarded as already pre-processed sensor data. For example,
the image data from the camera are not presented by a pixel
matrix. Instead, the vision perceptor sends a collection of
observable objects with egocentric coordinates relatively to the
camera of the observing agent. In a similar way, action
commands of the agent are encoded as so-called effector values
and sent to the server which translates them to motor control
commands. The calculation of perceptor values and the
interpretation of effector values are part of the simulator, too.

On the agent side, a server message has to be parsed for the
contained perceptor values, and the action commands have to
be collected to the agent message. Both constitute a significant
burden for a beginner while it provides only few insights to
robotics. The RoboNewbie users need not to care about that,
because the RoboNewbie agents do all this work in the
background.

Besides some effectors related to initial connection with
SimSpark RCSS, there are hinge joint effectors for each of the

22 hinge joints (see Figure 4) and a say perceptor (as of a
loudspeaker with limited capacity). The following perceptors
are available in SimSpark RCSS (for details see the Wiki or
our SimSpark description):

 Vision Perceptor (as of a camera in the center of the head).

 Hinge Joint Perceptors at each of the 22 hinge joints.

 Accelerometer in the centre of the torso.

 GyroRate Perceptor in the centre of the torso.

 Force Resistance Perceptor at each foot.

 Hear Perceptor (as of a directed microphone with limited
capacity).

 Game State Perceptor (reporting the actual game state of
the soccer match).

V. ROBONEWBIE FRAMEWORK

The RoboNewbie framework offers a comfortable interface

for agents interacting with SimSpark RCSS. It includes sample
agents which illustrate basic concepts and methods of Robotics
and Artificial Intelligence. Users can start exercises with these
agents and learn how to use RoboNewbie and what the
programming of robots is like. They can make their own
experiences with different topics and algorithms by
modifications and extensions.

It was a main goal of the project, to provide easily
understandable concepts, methods and programs. There are no
complicated structures, and all code is documented in detail. As
a consequence, some more demanding concepts were replaced
by simpler approaches (e.g. keyframe motions instead of
inverse kinematics, approximated coordinates of observed
objects etc.). Nevertheless, the clear structure of the project
supports extensions for more challenging solutions if wanted.

A. Low Level Interface Functionalities

The framework includes interface functionalities on two
levels. The lower one corresponds to the hardware-near
functionalities of robots, while the higher one is concerned
with more abstract control functionalities. Especially for the
lower level, parts of the code of the team magmaOffenburg [8]
were used by us as documented in our source files.

The hardware-near layer encapsulates the network protocol
for interaction with SimSpark RCSS and it allows access to the
simulated hardware entities corresponding to sensors and
motors. The access is implemented by getter functions for
perceptor values of different perceptors which can be used
similar to sensor signal queries of real robots. Related setter
functions for effector values can be used for the control of
actuators. Especially the low level interface functionalities for
SimSpark RCSS are a hurdle for beginners and need time
consuming work even for experienced users.

Figure 3: Message exchange during the server cycles.

Page | 84

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

They concern tasks like network connection,
synchronisation with the server, parsing of nested server
messages, syntactical analysis of S-expressions, synthesis of
agent messages with a lot of technical non-robotics details. The
users of RoboNewbie need not to care about all this details, the
framework offers ergonomic methods for the interaction with
the simulated environment in an easily understandable way
similar to the methods used by the operating systems of real
robots. Users can learn to use these methods after a short
training time (cf. the evaluation in Section VI).

The synchronization protocol was already described in
Section IV. The user needs not to care about the
communication, except the delays by the protocol and the
duration of the cycles given by 20 msec. It is necessary to fetch
a server message at each cycle and to send the agent message
before the end of the cycle. The related control structures are
already implemented in the examples and explained by the
tutorial. Hence, if the calculations during one cycle do not
exceed the cycle time, there will be no problem. The time
needed depends of course on the used computer. The example
agents run without problems even on less powerful machines.

The first example ''Agent_BasicStructure'' in the tutorial let
the users start with an agent which already implements all low
level communication. The agent simply rises an arm by setting
related effector values. The user can experiment with other
values and other effectors just to understand the basic
structures.

B. Perception

The available perceptors were already listet in Section IV.
All perceptor values can be queried by related getter methods
using the perceptor names instead of the acronyms of the server
messages. This allows a comfortable access to the perceptor
data which corresponds to the access of sensor values by a
related operating system of a real robot.

The necessary conversions from the nested server messages
to the perceptor values are already implemented in the
RoboNewbie framework. For that, the server message are
parsed for the constituents of a tree like structure (again, thanks
to the code of the team magmaOffenburg [8]). According to the
analyzed acronyms in the expressions of the tree, the
corresponding perceptor values are filled in by RoboNewbie.

The programs ''Agent_TestPerceptorInput'' and
''Agent_TestLocalFieldView'' illustrate the usage of the related
getter methods and the perceptor values. The examples serve
also as an illustration to the usage of the logger functions
described below in Subsection E.

As an exercise of the tutorial, the user can implement an
agent, which lifts the robots arm, when it senses another robot
and moves the arm down, when it does not sense any robot.
Which arm is lifted should depend on the side where the other
robot is seen.

Special efforts are needed for the vision perceptor. It
provides coordinates of all objects in the vision range of the
camera. SimSpark RCCS in its common version does not
communicate image data. Instead, the communicated

information can be understood as the result of basic image
interpretation, it contains coordinates of the goal posts, the
lines, the ball, and the body parts of robots.

The vision perceptor provides values by egocentric
coordinates relatively to the camera in the centre of the head.
Since the head may be turned and tilted, further calculations are
necessary to get the coordinates of objects relatively to facing
forwards. To get the coordinates relatively to the feets on the
ground, it needs further calculations. Accurate calculations
would need the inspection of the cinematic chain. The
necessary data are available by the hinge joint perceptors.
Further calculations including self localization are necessary
for the transformation into global coordinates. RoboNewbie
does not provide related programs following the intended
''minimalistic'' approach, because they would not be
understandable by beginners without pre-knowledge about
Robotics. But the implementation of related methods can serve
as exercises during courses in Robotics.

As a simple substitute, we have decided to provide only
approximations for the conversion from camera coordinates to
facing forward coordinates. They are documented in the
sources and easily to understand. Users can make experiments
according to the accuracy and draw own conclusions on
cinematic relations.

Visual information is provided by SimSpark RCSS only at
each third cycle, and the robot would have to act blindly in
between when there are no vision data available. Hence, the
vision information should be stored for the following cycles.
Moreover, the vision perceptor is limited by the camera view
range of 120 degrees horizontally and vertically. The robot has
to move its head to observe more objects in the world.

Again it is useful to store objects seen before in other
directions. In general, such updating and memorizing of
observations is maintained as belief of the robot in a so called
world model. Updates may regard corrections according to
robot motion, guesses for movements of invisible objects and
integration of information communicated by other robots.

Again, a fully elaborated world model is far behind the
scope of beginners. Hence, RoboNewbie provides a very
simple version, where just the observed objects are stored in a
simple form. The coordinates of those objects are referenced
with respect to the facing forwards coordinates. Turnings of the
head are already regarded by RoboNewbie, but only by the
approximate calculations as described above. Other movements
of the robot like turning or walking are not regarded. Time
stamps indicate the last time of observing an object. The
example ''Agent_TestLocalFieldView'' illustrates the
perception features of RoboNewbie.

C. Motions

All intentional motions are performed by controlling the
hinge joints (see Figure 4) by sending effector values (defining
the speeds of motors) to SimSpark RCSS. Then the physics
simulation engine calculates the effects of the commands
regarding physical laws and updates the simulated world
accordingly.

Page | 85

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Simple motions like turning the head or rising the arms can
be easily programmed by the users following the already
mentioned examples. The motions can be controlled using the
feedback of hinge joint perceptors. i.e. by sensor-actor
coupling, where the delay of observing an action has to be
regarded as described in Section IV. There is much room for
own experiments of users.

More complicated motions like walking need coordinated
movements of different joints. Users may learn about these
problems after some trials. We have decided to provide
keyframe motions in RoboNewbie because they are easily to
understand and to design. The interpolation mechanism for
keyframe motions in RoboNewbie realizes a linear
interpolation - users may implement other interpolation
methods like splines if they want. Keyframes are stored as text
files which can be edited by any text processing system. Users
can even design and change motions while using the programs
as a black box.

RoboNewbie contains a set of predefined keyframe motions
for walking, turning, stand up and others. Users can change

these motions (the related text files). New motions need an
integration as explained in the tutorial and the documentation.

According to simplicity, there are no concepts implemented
for interruption of motions: Each motion is performed
completely until its end, and there are no cyclic motions, e.g.
for walking. Instead, continuous walking can be performed by
subsequent calls of a two-step-walk.

The design of keyframe motions is supported by a graphical
Motion Editor. It can be downloaded from the RoboNewbie
Web page as well. It shows the postures of the robot for
selected keyframes. Then the keyframes can be edited in two
ways. In the graphical representation the posture can be
kneaded into the desired posture with the mouse. Alternatively,
each joint angle can be set to specified values which are
immediately presented by the graphics. Transitions between
keyframes can be defined with specific transition times
resulting in a keyframe sequence as usual.

The program ''Agent_KeyframeDeveloper'' helps designing
keyframes. A robot performs the motion of the actually edited
keyframe file. After each change, the new motion is performed
immediately. If the robot falls down, it stands up by itself.

The example ''Agent_SimpleWalkToBall'' illustrates the
motion concepts. As an exercise of the tutorial, the users can
change that program to implement obstacle avoidance (walk
around the ball without touching it). They can use motions for
walk, stop and turn. Additionally, the agent must be able to
recognize the ball and to decide for the appropriate motion
according to the ball position. Another exercise is the design of
a new motion for kicking the ball. Users can furthermore do
their own experiments e.g. with dancing robots.

In general, keyframe motions are useful for special motions
like standing up, but they are not so well suited e.g. for
walking. Walking is still a challenging problem in Robotics.
The users of RoboNewbie will get some understanding about
the task. Moreover, the framework is well suited as a basis for
other implementations and for Machine Learning by more
educated users. But according to our ''minimalistic'' approach,
related implementations are not provided.

D. Control Cycle and Decision Making

The basic control cycle follows the classical centralistic
deliberation approach, often denoted as the ''sense-think-act-
cycle'', or by similar names. This corresponds closely to the
cycle given by SimSpark RCSS: At first, sensations are
provided to the agent, then the agent decides for appropriate
plans and then it sends the related action commands back to the
server.

To realize concepts of Embodied Robotics/AI it would be
necessary to have local sensor actor coupling, distributed
control, embodiment, situatedness, emergent behaviour etc.
The real robot Nao as well as its simulated counterpart with the
central control (i.e. our agent) is not primarily designed for
such purposes. It is possible in principle to design sensor actor
couplings and other behavioral concepts in the RoboNewbie
framework. One might even split the agent into different
''parallel'' acting parts (implemented e.g. by threads) to simulate

Figure 4: Joints of the robot. The range of the joint angles are

given in degrees. Picture adapted from [5].

Page | 86

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

distributed controls, but some synchronization is unavoidable
by the server cycles of SimSpark RCSS.

At the same time, thinking in terms of the ''sense-think-act-
cycle'' is quite natural for beginners because it reflects some
causal dependencies. It provides an intuitive and easily
maintainable structure in the design of robots. Therefore, the
control cycle in RoboNewbie adopts the related terms for
structuring the run-methods of the agents by cyclic calls of
methods sense, think and act. The think-method is sometimes
omitted in case of simpler (''reactive'') agents.

The sense method is responsible for receiving and
processing the perceptor data by the related RoboNewbie
methods. The act method calls the transfer of the agent
message with the effector commands. The think method
between sense and act does the analysis of the perceptor data
(e.g. a more elaborated world model) and the decision for plans
and actions to be performed by the robot now and possibly in
the future. The think method can of course be split into more
dedicated deliberation methods which may be organized
hierarchically if needed. All this can be worked out at the
exercises during related courses. RoboNewbie provides just a
simple example for illustration, the Agent_SimpleSoccer.

The Agent_SimpleSoccer is able to perform a very simple
soccer play: As long as it is behind the ball and sees the
opponent goal, it walks forward while pushing the ball with its
feet. If the condition is not fulfilled, it turns around until it sees
the ball, walks to the ball, turns around the ball until it sees the
opponents goal, and then it starts walking towards the goal
again. The decisions are made by a simple decision tree
whenever the previous keyframe motion is completed (note
that keyframe motions should not be interrupted).

Agent_SimpleSoccer can be improved in many ways. This
is just what we want: Users can collect many ideas for
improvements. They may concern better perception (e.g. by a
ball model guiding the search), improved motions (like faster
walk), new motions (like kick or dribble), better control (like
path planning). It is possible to have more players on the soccer
field such that players can cooperate (e.g. by positioning and
passing). This gives room for simple contests during a course.

E. Logger

Runtime debugging of programs may be difficult because it
affects synchronization with the server. Even simple debug
messages printed on System.out may need too much time such
that the agent cannot respond in time. It is possible to use the
so-called sync mode which lets SimSpark RCSS wait until all
agents have sent their messages (cf. the documentation).
Alternatively, all debug messages can be collected by the
program ''Logger'' of RoboNewbie. After the agent has
finished, the collected messages are printed out. The usage is
shown by the programs ''Agent_TestPerceptorInput'' and
''Agent_TestLocalFieldView''. Both programs provide also
examples for the usage of the getter methods for perceptors.

VI. EXPERIENCES

The RoboNewbie framework was tested at different places.

for introductory Robotics courses of about 30 hours during 5-8
days at Ohrid, Warsaw, Novi Sad, Rijeka, Sarajevo, and
Plovdiv. 20 hours were planned for lectures, 10 hours for
introduction and first usages of RoboNewbie. Additional 10-20
hours were used for further experiments by homework [9].

RoboNewbie served for illustrating experiments and for
exercises in connection with the theoretical instructions. The
participants of the courses learned to use RoboNewbie during
short time and they programmed an improved soccer player at
the end. The work with RoboNewbie was helpful to understand
the theory. The final evaluation of the courses by the
participants resulted in high marks. Especially the competitions
with the improved soccer agent were motivating.

As RoboNewbie is intended for easy usage by beginners in
Robotics, the requirements for the users are as minimal as
possible, while the framework gives maximal support. For
simplicity, approximations are used instead of complex
calculations (e.g. simple offsets instead of linear algebra for
determining the camera coordinates).

Since most of the courses had only a short duration,
organisational issues were important for the success. We have
asked the local organizers to prepare the technical resources
accordingly. In the following, we describe some requirements
in more detail.

A. Local Requirements for the Courses

Participants: Users are expected to have some
programming skills in Java, such that they are able to
understand and modify the agent programs. The programs are
already prepared for usage under Netbeans, therefore the
participants should be familiar with such tools. Users should
be able to download and install programs from the web
according to given instructions. Some physical and
mathematical background is needed to understand the
theoretical and practical issues of Robotics.

Participants should work in teams (as useful for
programming exercises in general). Each team might consist of
3-5 participants, preferably mixed by different skills of its
members. It helps for a smooth course if there are no big
differences between the teams (e.g. each team should have at
least one of the good programmers of the course, good
mathematicians etc.).

Technical Resources: The participants should have their
own computers where they can install and use the programs.
Participants need access to the computers during the courses as
well as for their homework. Hence, laptops are preferable.
They are sufficient to run all the programs. Alternatively,
participants may use computers in a lab (which have to be
prepared accordingly if students are not allowed to install their
own software).

The list of needed installations is given on the RoboNewbie
webpage. Instructions for installation and functionality tests are

Page | 87

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

found there, too. If possible, students should get information
before starting the course. They should be asked to install the
programs by themselves and test if the programs can be started.
If students cannot be asked before, an on-site test by some
responsible person should be performed. It helps to save time
during the courses if on-site problems with hardware or
software are solved before. Nevertheless, if computers are
ready, installation of programs needs only short time and can
be done at the beginning of a course.

Organisational Issues: A good schedule is necessary for
smooth courses. This includes early information (as far as
possible) of participants as described above. Then the lectures
and exercises are mixed appropriately. After a short overview
about Robotics, participants start their first exercises as given
by the “Quick Start Tutorial” (also found on the RoboNewbie
web page). Later, more explanations are given as far as the
theoretical lectures proceed. Thus, theoretical introductions to
sensors can be connected to explanations of perceptor usage in
RoboNewbie, introductions to motions are connected to the
development of keyframes etc.

B. Competition

Our courses end with a competition, which serves as a
motivation for the participants. The successful participation at
the competition can also be a substitute for an examination if
students need some certificate.

The competition is announced at the beginning of the
course, and it should be performed by the teams. This helps for
the integration inside the teams from the very beginning. The
number of competing teams should be not more than 10 in
order to make the contest not too long. This is also an argument
to form teams if the number of participants is larger. The level
of teams should be comparable for fairness reasons.

Until 2014, the task for the competition was an
improvement of the program Agent_SimpleSoccer to get a
better performance. It was up to the teams, what they wanted to
improve. Agent_SimpleSoccer performs very poorly as
described before. It needs about 10 minutes to find the ball and
to push it into the goal. It was designed this way just to
motivate the participants for improvements.

To make the competition a success (and a fun), it must be
organized by strict and transparent rules. It should have a tight
schedule to emphasize the aspects of sports. Therefore, each
team has only one trial of only 3 minutes. The ranking of teams
is determined by fastest scoring times. For teams who did not
score, the ranking is given by minimal distances to the goal
after the 3 minutes have elapsed.

At the competition, each team gives a short description of
its efforts and expected results. This is also a possibility to
check the engagement of each team member. Moreover, each
participant can be asked to provide a written report of his/her
individual efforts.

At the course in Plovdiv 2014, a student group
implemented a very powerful kick which allowed scoring
immediately. Thus this kind of task is considered to be solved
finally (in times of internet, copying this solution could make

following competitions too simple). Thus, a new kind of
competition with penalty kicks (attacker vs. goalkeeper) is
tested in our recent courses.

C. Evaluation and Results

The participants of the courses were asked to give feedback
on a prepared form at the end of the course. They could
evaluate different aspects of the course and the framework.As
the evaluation shows, the exercises with the simulated robots
were motivating and helpful, the participants wanted to have
more time for exercises and especially for own experiments.

As expected, the participants with less experience in
Robotics gave higher marks related to motivation and help. The
usage of the framework was intuitive. Interestingly, the
participants with more experience in Java programming gave
significantly higher rankings to the framework. The level of the
exercises was considered as adequate, but for that the
proportion of exercises was adapted by us accordingly.

As a unique observation, participants wanted to have more
time for exercises than for lessons. This may have several
reasons. The individual work load resulted in a bias for
exercises: The participants had to fulfill given requirements,
and many of them spent much time for preparing the final
competition. Furthermore, the lectures tried to give a broad
overview about the actual state of art in Robotics. There was
not enough time to exercise on all these topics.

The ''minimalistic approach'' is useful especially for short
courses and for introductions to longer courses. Later on, the
disposability of non-minimalistic more sophisticated methods
could be useful for higher level integrative tasks. It is
impossible to let students implement all desirable algorithms in
the limited time of a course. Joint activities of robots, for
example, depend heavily on the available bodily skills and on
the capabilities for interaction and coordination.

VII. CONCLUSION

The RoboNewbie framework can be used without special
hardware. It simply needs a computer for simulation of the
robot soccer scenario. The soccer scenario with humanoid
robots is more complex than experiments by many hardware
equipments. Nevertheless, RoboNewbie is easy to understand
and to use after a short introduction. No special knowledge
(except basic programming in Java) is required to start with
own experiments, and while the users acquire more knowledge,
they can work on more challenging tasks.

The practical evaluations have confirmed our expectations
on the RoboNewbie project. Beginners in Robotics were able
to use the framework after short introductions. They were able
to program own methods in parallel to the theoretical concepts
and methods provided by classes.

ACKNOWLEDGMENT

The first version of RoboNewbie was developed by Monika

Domańska from the NaoTeam Humboldt [7]. We are thankful
to the whole RoboCup community, especially to the developers

Page | 88

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0012 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

of SimSpark RCSS, to the team magmaOffenburg and to our
team NaoTeam Humboldt, and especially to Yuan Xu.

REFERENCES

[1] T. Padir, and S. Chernova (eds.), Special issue on robotics education.

IEEE Transactions on Education, vol. 56, issue 1, 2013.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6423944.

Visited at 19.1.2015.

[2] Yuan Xu, From Simulation to Reality: Migration of Humanoid Robot
Control. Dissertation Humboldt University Berlin, 2013.

[3] RoboCup Web page. http://www.robocup.org. Visited at 19.1.2015.

[4] Aldebaran Web presence http://www.aldebaran-robotics.com/en/.

Visited at 19.1.2015.

[5] SimSpark RCSS Wiki (Documentation of the Simulator).

http://simspark.sourceforge.net/wiki. Visited at 19.1.2015.

[6] R. Smith, Open Dynamic Engine User Guide, 2006.

http://www.ode.org. Visited at 19.1.2015.

[7] RoboNewbie. http://www.naoteamhumboldt.de/projects/robonewbie/.
Visited at 19.1.2015.

[8] Homepage Team magmaOffenburg.

http://robocup.hs-offenburg.de/. Visited at 19.1.2015.

[9] M. Domańska, H.D. Burkhard, RoboNewbie: A Framework for
Experiments with Simulated Humanoid Robots. In M. Ivanović, L.C.
Jain (eds.), E-Learning Paradigms and Applications, Agent-based
Approach. Springer Series: Studies in Computational Intelligence, vol.
528, 2014, pp. 1-38.

Page | 89

http://www.aldebaran-robotics.com/en/

	Artificial intelligence_largerSize
	CR-ICIT15162
	CR-ICIT15178
	CR-ICIT15189
	CR-ICIT15191
	CR-ICIT15201
	CR-ICIT15203
	CR-ICIT15226
	CR-ICIT15234
	CR-ICIT15243
	CR-ICIT15244
	CR-ICIT15251
	CR-ICIT15309
	CR-ICIT15326
	CR-ICIT15377
	CR-ICIT15388
	CR-ICIT15391
	CR-ICIT15404
	CR-ICIT15430
	CR-ICIT15457
	CR-ICIT15465
	CR-ICIT15480
	CR-ICIT15571
	CR-ICIT15573
	CR-ICIT15581

