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Abstract - This work is devoted to one new approach for decomposition of images represented by matrices of size 2n2n, based on the 

multiple application of the Singular Value Decomposition (SVD) over image blocks of relatively small size (22), obtained after division 

of the original image matrix. The new decomposition, called Hierarchical SVD, has tree structure of the kind binary tree of n 

hierarchical levels. Its basic advantages over the famous SVD are: the reduced computational complexity, the opportunity for parallel 

and recursive processing of the image blocks, based on relatively simple algebraic relations, the high concentration of the image energy 

in the first decomposition components, and the ability to accelerate the calculations through cutting-off the tree branches in the 

decomposition levels, where the corresponding eigen values are very small. The HSVD algorithm is generalized for images of 

unspecified size. The new decomposition opens numerous opportunities for fast image processing in various application areas: image 

compression, filtration, segmentation, merging, digital watermarking, extraction of minimum number of features sufficient for the 

objects recognition, etc.   

Keywords - Singular Value Decomposition (SVD), block SVD, Hierarchical SVD, binary tree, computational complexity. 

I.  INTRODUCTION  

The SVD decomposition had significant influence on the 
processing and analysis of digital images used in computer 
vision systems. This decomposition was the target of 
significant number of investigations, presented in scientific 
monographs [1-6] and papers [7-12].  

The SVD has the following basic features: 1) it is an 

optimum decomposition, because it concentrates maximum 

part of the image energy in a minimum number of components; 

2) the image, restored after the reduction of the low-energy 

components has minimum mean square error. One of the basic 

problems, which restrict the practical use of the famous SVD, 

is its high computational complexity, which grows together 

with the size of the image matrix. Several approaches are 

offered to overcome this problem. The first approach is based 

on the SVD calculation through iterative methods, which do 

not demand to define the characteristic polynomial of the 

matrix. In this case the SVD is executed in two stages: in the 

first, the matrix is transformed into triangular form through the 

QR decomposition, and then - into bi-diagonal through 

Householder’s transforms [13]; in the second stage on the bi-

diagonal matrix is applied an iterative algorithm, whose 

iterations stop when the needed accuracy is obtained. Such is, 

for example, the iterative method of Jacobi [3, 6, 25], in 

accordance with which to calculate the SVD for a bi-diagonal 

matrix, is needed to execute a sequence of orthogonal 

transforms with matrices, which differ from the singular matrix 

in the elements of the rotation matrix of size 22 only. The 

second approach is based on the relation between the SVD and 

the Principal Component Analysis (PCA). It could be 

implemented through neural networks [14] of the kind 

generalized Hebbian or multilayer perceptron networks, which 

use iterative learning algorithms. One more approach is based 

on the algorithm, known as Sequential KL/SVD [15]. Its basic 

idea is given in brief as follows: the image matrix is divided 

into blocks of small size, on which is applied SVD, based on 

the QR decomposition [6]. The SVD is initially calculated for 

the first block, and then iterative SVD calculation is executed 

for each block, using the transform matrix, already obtained for 

the preceding block (update procedure). In the iteration process 

the SVD components, which have very small values, are 

eliminated. 

II. RELATED WORK 

Several methods had already been developed, aimed at the 
enhancement of the SVD calculation [16-19]. The first, called 
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Randomized SVD [16, 17], is based on the algorithm in 
accordance with which, are randomly selected some rows (or 
columns) of the transform matrix. After scaling, they build a 
small matrix, for which is calculated the SVD, which is then 
used as an approximation of the original matrix. In [18] is 
offered the QUIC-SVD algorithm, which is suitable for 
matrices of very large size. Using this algorithm is achieved 
fast sample-based SVD approximation with automatic relative 
error control. This algorithm also uses a sampling mechanism, 
called “the cosine tree”, to achieve best-rank approximation. 
The experimental investigation on the QUIC-SVD, given in 
[19], offers better results than these, obtained with MATLAB 
SVD and Tygert SVD [17]. The speedup achieved is 6-7 times 
higher compared to that of the exact SVD, but it depends on 

the selected value for the parameter  which defines the higher 

limit of the approximation error with a probability of size (1-).  
Significant number of SVD-based methods had been 

developed, aimed at the image compression efficiency 
enhancement [20-24]. The method, called Multiresolution SVD 
[20], comprises 3 steps: 1) image transform through 9/7 bi-
orthogonal wavelets of 2 levels; 2) decomposition of the 
transformed image through SVD executed on blocks of size 

22 up to level six, and 3) execution of the SPIHT and gzip 
algorithms. In [21] is offered a hybrid KLT-SVD algorithm for 
efficient image compression. The K-SVD [22] for facial image 
compression is a generalization of the K-means clusterization 
method and is applied in the iterative learning of over-complete 
sparse coding dictionaries. In correspondence with the 
combined compression algorithm presented in [23], the SVD is 
executed individually for each of the color components R, G, 
B, segregated from the image stored in the JPEG file format. In 
[24] is introduced the Higher-Order SVD (HOSVD), which is 
an extension of the SVD matrix to tensors with application in 
the data compression. In [26, 27] are presented some parallel 
hardware implementations of the SVD for symmetrical 
matrices, based on the Jacobi’s method.  

In this work is offered one new approach for hierarchical 
image decomposition, based on the multiple SVD execution on 
blocks of small size. This decomposition, called here the 
“Hierarchical SVD” (НSVD), has a tree structure of the kind 
binary or 3-nodes tree (full or truncated). The SVD calculation 

for blocks of size 22 is based on the adaptive KLT [28]. The 
НSVD algorithm [29, 30] is aimed at the achievement of 
decomposition with high computational efficiency, which is 
also suitable for parallel recursive processing with relatively 
simple algebraic operations, and permits calculation speedup 
through cutting-off the branches with very small eigenvalues.  

The paper comprises the following sections: SVD 

calculation for a matrix of size 22; representation of the 

hierarchical SVD for a matrix of size 2n2n; evaluation of the 
computational complexity of the hierarchical SVD of size 

2n2n; representation of the HSVD algorithm through tree-like 
structure, and conclusions.  

III. CALCULATION OF SVD WITH A MATRIX OF SIZE 22  

A.  General case: SVD execution on image of size NN 

 In the general case, the decomposition of the square 

image [X(N)], represented by a matrix of size NN is based on 

the direct SVD, defined by the relation below [10, 11]: 

 .)]([)]()][([)]([ / t
ss

N

1s
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t21 VUNVNNUNX
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
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     (1) 

The inverse SVD is respectively represented as: 
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],..,,[)]([ N21diagN   is a diagonal matrix, composed of 

the eigenvalues s  of both matrices )]([ NY  and )]([ NZ , 

which are same. 

         From (1) it follows that for the description of a matrix of 

size NN are needed N×(2N+1) parameters in total, i.e., in the 

general case the SVD is an of over-complete decomposition.  

B. Particular case:  SVD for one image block of size 22  

The direct SVD for the square block [X] of size 22 (N=2) 
is represented by the relation: 
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where a,b,c,d are pixels; ,1 2  - common eigen values of the 

symmetrical matrices [Y] and [Z]: 
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1U


 and 2U


 are the eigenvectors of the matrix [Y], for 

which: sss UUY


][ , s = 1, 2;            

1V


 and 2V


 are the eigenvectors of the matrix [Z], for 

which: sss VVZ


][ , s = 1, 2.  
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C. Calculation of the eigenvalues and vectors of the 

symmetrical matrix of size 22  

Let for N=2 the corresponding matrix   







2221

1211

gg

gg
G  is 

symmetrical in respect of its main diagonal. Then here could be 
assumed the simplified symbols: g11=g1, g22=g2, g12=g21=g3. 
The eigenvalues 21  ,  of the matrix [G] are the solution of the 

characteristic equation:   
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2            (8) 

Since the matrix [G] is symmetrical, its eigenvalues are real 
numbers: 
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The eigenvectors s


 of the matrix [G] for s=1, 2 are the 

solutions of the system of equations below: 
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The eigenvector   ,, T
s2s1s 


 which corresponds to 

the eigenvalue s , is: 
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Then the corresponding transposed matrix is: 
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The elements ij of the matrix  Φ  could be represented as 

a function of the angle, on which the coordinate system, 

defined by the vectors 1


 and 2


 is rotated in respect to the 

original coordinate system. In this case:  
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Since )/()(  2tg1tg22tg , the angle  is defined as: 
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From (15) it follows, that: 
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In this case the eigenvectors are correspondingly [6]:  
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 and ,]cos,sin[ t

2 


            (20) 

where the angle  is defined by (18). 

D. Calculation of the eigenvalues and the eigenvectors of 

matrices [Y] and [Z] 

The characteristic equation of the matrices [Y] and [Z], defined 

in accordance with (8), is: 
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where:  
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The direct SVD for a matrix of size 22 could be represented 

by the relation: 

][][][

][]][[][ /

s

2

1s
s2211

t21

TTT

VU
dc
ba

X














                            (29) 

 where ],[][ 21 UUU


 , ],[][ 21diag  , ],[][ 21 VVV


 .  

The eigen images of the matrix [X] are the matrices [T1] 
and [T2], defined by the relations:  
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 and sV
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 are defined in accordance with 
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The inverse SVD for a matrix of size 22 is defined by the 

relation: 

],[][][][
/

/
/ VXU

0

0 t

21
2

21
121 












                                (35) 

where  

    

 

,
cossin

sincos

)()(

)()(






























































11

11

2212

2111
t
2

t
1t

AA

2

AA

A

AA

2

AA

A

2

1

UU

UU

U

U
U 



          (36) 

 

.
cossin

sincos

)()(

)()(
],[
























































22

22

2221

1211
21

BB

2

BB

2

BB

B

BB

B

2

1

VV

VV
VVV


(37) 

Page | 53



ICIT 2015 The 7th International Conference on Information Technology 
doi:10.15849/icit.2015.0008   © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15) 

The couple Direct/Inverse SVD could be then represented as 

follows: 
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     or 
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where 
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Check: if a=b=c=d, then ,2a4  ,0   ,2a2  

,242 a4a4BA  ./4θθ 21   

In this case the couple Direct/Inverse SVD is correspondingly: 
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The equations above confirm the correctness of (39) and 

(41) for the SVD of size 22, executed for the image matrix of 

same size and with constant brightness of the image pixels. 

From (39) it follows, that that for the representation of the 

matrix [X] of size 22 through SVD are needed four 

parameters altogether: ,1 ,2 1θ and ,θ2 calculated on the 

basis of (22) and (32). Hence, the SVD of size 22 (SVD2×2), 

defined in accordance with (39), is not over-complete. 

E. Energy distribution in the SVD components for a matrix 

of size 22 

The energy of the matrix 






dc
ba

X ][  (or of its quadratic 

Euclidean norm) is defined by the sum of the squares of its 
elements:     
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In correspondence with (5) and (39) the matrix [X] is 
represented as the sum of two components:  
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C1 and C2 are the eigen images of the matrix [X].   

The energy of each eigen image ][ 1C , ][ 2C  is respectively: 
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From the Parseval's theorem for energy preservation, 

)(
21 CCX EEE  and from (47) and (48) it follows, that 

,
21 CC EE   i.e., the energy XE  of the matrix [X] is 

concentrated mainly in the first SVD component. The 
concentration degree is defined by the relation: 
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 In particular, for the case, when the matrix [X] is with 
equal values of the elements (xi,j=a), from (39), (47), (48) and 

(49) is obtained ,2
CX a4EE

1
 0E

2C   and 1 . Hence, 

the total energy of the matrix [X] is concentrated in the first 
SVD component only. 
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IV. HIERARCHICAL SVD FOR A MATRIX OF SIZE 2N2N 

The hierarchical SVD (HSVD) for the image matrix [X(N)] of 

size 2n2n pixels (N=2n) is implemented through multiple 

execution of the n-levels SVD on image blocks (sub-matrices) 

of size 22. Let the matrix [X(4)] is of size 2222 (N=22=4). In 

this case the number of hierarchical levels is n=2.   

In the first HSVD level (r=1), the matrix [X(4)] is divided into 

4 sub-matrices of size 22, as it is shown in the left part of 

Fig. 1. The elements of the sub-matrices are as follows: 
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On each sub-matrix [Xk(2)] of size 22 (k=1,2,3,4) is 
applied SVD2×2, in accordance with (39). As a result, it is 
decomposed into 2 components: 
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From (45) and (46) it follows that each sub-matrix )]([ , 2C km  

of size 22 could be represented as shown below: 
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For m=2,       
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The sub-matrices )]([
,

2C
km  of size 22 for k=1,2,3,4 compose 

the matrices )]([ 4Cm , each of size 44 (for m=1,2): 
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Hence, the SVD decomposition of the matrix [X] in the first 
level is represented by two components only:  
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In the Second HSVD level (r=2), on each matrix )]([ 4Cm  

of size 44 is applied 4 times SVD2×2. Unlike the preceding 1st 
level, in the second level the SVD2×2 is applied on the sub-

martices [Cm,k(2)] of size 22 each, whose elements are 
mutually interlaced and are defined in accordance with the 
scheme, shown in the right part of Fig. 1. Here the elements of 
the sub-matrices, on which is applied the SVD2×2 in the first 
and second hierarchical level (r=1,2), are tinted in same color. 
As it could be seen, the elements of the sub-matrices of size 
2×2 in the second level are not neighbors, but are placed at one 
element interval in horizontal and vertical directions. In result 
of the SVD2×2 execution, in the second level each matrix 

)]([ 4Cm  is decomposed into two components: 

)]([)]([)]([Cm 4C4C4 m,2m,1   for m=1,2.             (59) 

The full decomposition of [X] is then represented as: 
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Fig. 1. The elements of the sub-matrices of size 2×2, over which is applied 

the SVD2×2 in the 1st and 2nd HSVD levels 

Hence, the decomposition of the image of size 4×4 

comprises four components altogether. When the matrix [X(8)] 

is of size 2323 (N=23=8 for n=3), three HSVD levels are 

executed through multiple applying of SVD2×2 over the image 

blocks of size 22. In this case the total number of 

decomposition components is eight. In the first and second 

level the SVD2×2 is executed in accordance with the scheme, 

shown on Fig. 1. In the third level, the SVD2×2 is applied again 

on the sub-matrices of size 22. Their elements are defined in a 

way, similar with this, shown on Fig. 1. The only difference is 

that the elements of same color (i.e., belonging to same sub-

matrix) are moved 3 elements away in horizontal and vertical 

directions. The presented HSVD algorithm could be 

generalized for the cases, when the image [X(2n)] is of size 

2n2n pixels:   
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In this case, the total number of levels is n, and the 

displacement in horizontal and vertical directions between the 

elements of the blocks of size 22 in the current level r, is 

correspondingly (2r-1-1) elements for r =1,2,..,n.  

V. COMPUTATIONAL COMPLEXITY OF THE HIERARCHICAL    

      SVD WITH MATRIX OF SIZE 2n2n  

A.  Computational complexity of SVD with a matrix of size 22 

The computational complexity is defined on the basis of 
(39), taking into account the number of operations 
multiplication and addition, needed for the preliminary 

calculation of the components , , , , , ,A 1, 2, 1, 1, 

defined by Eqs. (27), (28), (34) and (42). Then: 

- The number of multiplications needed for the calculation 

of (39), is m= 39; 

- The corresponding number of additions is s=15. 

The total number of the needed algebraic operations for the 

execution of SVD of size 22, is:  

SSSVD(22) =m+s=54.                               (62) 

B.  Computational complexity of the hierarchical SVD with a 

matrix of size 2n2n  

The computational complexity of the hierarchical SVD is 

defined in similar way, as that for the SVD2×2. In this case, the 

number М of the sub-matrices of size 22, contained in the 

image of size 2n2n, is 2n-12n-1=4n-1, and the number of levels 

is n.  

 - The number of SVD2×2 in the first level is М1 = М = 4n-1; 

 - The number of SVD2×2 in the second level is М2=2М= 

2×4n-1; 

 - ……………………  

 - The number of SVD2×2 in level n is Мn=2n-1M=2n-1×4n-1;  

The total number of SVD2×2 is М=M(1+2+..+2n-1)=4n-1(2n-

1)=22n-2(2n-1) correspondingly, and the total number of 

algebraic operations for the HSVD of size 2n2n is: 

 .1225522.SSM22SS 2-2
SVDΣHSVD )()()( nnnn     (63) 

C. Computational complexity of SVD with a 2n2n matrix  

For the calculation of matrices [Y(N)] and [Z(N)] each of 

size NN, when N=2n, are needed 
2n2

m 2  multiplications 

and )( 122 n1n
s  

 additions. The total number of 

operations is: 

).()()(, 12321222NSS n1nn1n2n2
ZY  

      (64) 

In accordance with the analysis, given in [23], the number 

of the operations SS(N) needed for the iterative calculation of 

all N eigenvalues and the eigen N-dimensional vectors of the 

matrix of size NN for N=2n with L iterations is:   

),.)()(/(
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 (66) 

From (3) and (4) it follows that two kinds of eigen vectors 

( sU


 and sV


) have to be calculated, so the number of 

operations needed for their definition in accordance with (64), 

should be doubled.  
From the analysis of (1) it follows, that:  
- The number of multiplications needed to calculate all 

components is: ;2)2(22Σ 13n2n2nn
m

  

- The number of additions needed to calculate all 

components is: .12Σ n
s   

The global number of operations needed for the 
calculations in accordance with Eq. (1), is: 

.11221122122NSS 121213
D   )()()( nnnnnn

  (67) 

Hence, the global number of algebraic operations needed to 

calculate the SVD of size 2n2n, is: 
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D. Determination of the relative computational complexity of 

the HSVD 

The relative computational complexity of the HSVD could be 

calculated on the basis of (62) and (68), from which is defined 

the relation below:   
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         (69) 

The computational complexity of the HSVD is defined by 

(69). For n=2,3,4,5 (i.e., for image blocks, of size 44, 88, 

1616 and 3232 pixels) the values of 1(n,L) for L=10, 

obtained in accordance with (69), are given in Table 1. For big 

values of n the relation 1(n,L) does not depend on n and 

trends towards:  

         ))(/(),( 1L316516Ln n1   .                                (70) 

TABLE 1. THE COEFFICIENT 1(n,L) OF THE RELATIVE LESSENING OF THE 

COMPUTATIONAL COMPLEXITY OF HSVD TOWARDS THE SVD FOR L=10. 

n 2 3 4 5 

1(n,10) 5.44 4.14 3.61 3.37 
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Hence, for big values of n, in the case, when the number of 

iterations is L4 and (L)>1, the computational complexity of 

the HSVD is lower than that of the SVD. Practically, the value 

of L is much larger than four. For the case, given here, 1(10) 

= 3, i.e., the computational complexity of the HSVD is three 

times lower than that of the SVD. 

VI. REPRESENTATION OF THE HSVD ALGORITHM THROUGH 

TREE STRUCTURE 

The presented algorithm for 2-level НSVD with blocks of 

size 4×4 (n=2), represented by (60), could be generalized also 

for blocks of size 2n2n. In this case, the matrix [X] of each 

block could be represented by (61).   
  The number of the HSVD components is n. On the basis 

of the relations above, on Fig. 2 are shown the corresponding 
tree structures for the two-level case (n=2). As it could be seen 
from the figures, in accordance with (61) the НSVD algorithm 
is represented as a binary tree. For a НSVD with a block of size 
8×8, the binary tree should be of levels (n=3), while for the 
tree with three nodes, two levels only are enough. This means, 
that for the second case the computational complexity is lower. 

 Each branch of the trees, shown on Fig. 2, has a 

corresponding eigenvalue ks , , or ksks ,,   for the level 

1, and )(, mks  or )()( ,, mm ksks   for the level 2 

respectively. The total number of branches in the tree from 

Fig. 2 is equal to 24. A part of the branches in each level could 

be cut-off, if for them the condition: 0mksks  )(,, , is 

satisfied, or if their values are close to zero.  

To remove one component [C] from given НSVD level, it 

is necessary all values of  in this component to be equal or 

close to zero. In result, the decomposition for the 

corresponding branch could be stopped before it had reached 

the last level (n). In this way the НSVD algorithm is adapted 

in respect to the block contents. In this sense the НSVD 

algorithm is adaptive and easily adjustable to the requirements 

of each application.   

HSVD

Level 1

HSVD 

Level 2

[X] 
[X4] 

[X1] [X2] 

[X3] 

[C1] 

[C1,1] [C1,2] [C2,1] [C2,2] 

[C2] 
2,1 2,2 

2,3 2,4 1,3 1,4 

1,1 1,2 

1,1(1) 1,2(1) 

1,3(1) 1,4(1) 

1,1(2) 1,2(2) 

1,3(2) 1,4(2) 

2,1(1) 2,2(1) 

2,3(1) 2,4(1) 

2,1(1) 2,2(1) 

2,3(1) 2,4(1) 

(44)

(44) (44)

(44) (44)
 

Fig. 2. Representation of the 2-level НSVD algorithm through binary tree 

VII. CONCLUSIONS 

From the analysis of the presented HSVD algorithm it follows 

that its basic advantages to SVD are: 

1. Its computational complexity, represented as a full tree 

(without truncation), for a matrix of size 2n2n (n=2) is at least 

three times lower than that of the SVD, for similar matrix; 

2. The HSVD algorithm is represented as a tree structure of 

n levels, which permits parallel and recursive processing of 

blocks of size 22 in each level. On each block in the 

corresponding decomposition level is applied the SVD, 

calculated by using simple algebraic relations; 

3. The HSVD algorithm retains the SVD quality to 

concentrate the basic part of the image energy in the first 

decomposition components. After removal of the low-energy 

elements, the restored matrix has minimum mean square error 

and is an optimal approximation of the original; 

4. The tree structure of the HSVD algorithm (a binary tree) 

facilitates the ability to stop the decomposition in one or more 

of the tree branches, for which the corresponding eigenvalue is 

zero, or approximately zero. In result, the HSVD 

computational complexity is additionally reduced compared to 

that of the “classic” SVD;    

5. The HSVD algorithm could be easily generalized for 

matrices of any size (not for 2n2n only). In these cases the 

matrix should be divided into blocks of size 88, and on each 

to be applied the HSVD, i.e., will be executed a 

decomposition of eight components. Beforehand, all 

incomplete boundary blocks should be expanded through 

extrapolation. This approach is feasible, when the number of 

decomposition components, limited up to 8, is sufficient for 

the application. To increase the number of the HSVD 

components, the image should be divided into blocks of size 

1616 or larger; 

    6. The HSVD algorithm opens new opportunities for image 

processing in various application areas, such as: compression, 

filtration, segmentation, merging and digital watermarking, 

extraction of minimum number of features, sufficient for the 

objects recognition, etc.  
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