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Abstract— In Evolutionary Algorithms (EA), the selection scheme is a pivotal component, where it relies on the fitness value of 

individuals to apply the Darwinian principle of survival of the fittest. In Particle Swarm Optimization (PSO) there is only one place 

employed the idea of selection scheme in global best operator in which the components of  best solution have been selected in the process 

of deriving the search and used them in  generation the upcoming solutions. However, this selection process might be affecting the 

diversity aspect of PSO since the search infer into the best solution rather than the whole search. In this paper, new selection schemes 

which replace the global best selection schemes are investigated, comprising fitness-proportional, tournament, linear rank and 

exponential rank. The proposed selection schemes are individually altered and incorporated in the process of PSO and each adoption is 

realized as a new PSO variation. The performance of the proposed PSO variations is evaluated. The experimental results using 

benchmark functions show that the selection schemes directly affect the performance of PSO algorithm. Finally, a parameter sensitivity 

analysis of the new PSO variations is analyzed. 

Key words— Particle Swarm Optimization; Evolutionary Algorithm; Selection Schemes; Global-best. 

 

I. INTRODUCTION  

Swarm intelligence is a discipline that deals with natural 

systems composed of many individuals that exhibit collective 

behavior, decentralized control, and self-organization [1]. Its 

principle depends on the method of communication and 

interaction between the individuals and their environment. The 

most important application on swarm intelligence is Particle 

Swarm Optimization (PSO)[2]. PSO was developed by 

Eberhart and Kennedy [3]. It simulates the social behavior of 

bird flocking or fish schooling. It is a stochastic optimization 

technique and is remarkably developing [4]. Its simplicity and 

effectiveness have caught the attention of scientists from all 

over the world [5]. It is used to obtain the best solution among 

the particles in a swarm. This solution is called the global best 

fitness, and the candidate solution that achieves this fitness is 

called the global best position [6-8]. During the improvement 

loop, other solutions are attracted by the global best position, 

whose diffusion is degraded. Thus, global selection is 

conducted solely from the best solution among all the solutions 

(particles) to improve the next generation [9, 10]. The other 

solutions are ignored; therefore, the diversity of exploration 

may be affected, given that the search is concerned with only a 

single point. In other words, the global best concept of the PSO 

algorithm uses the search space capacity of PSO, which may be 

loose and therefore result in premature convergence and quick 

stagnation without generating efficient results. 

 

 In this study, the global best concept of PSO is substituted 

with a new selection scheme borrowed from Genetic 

Algorithm (GA). These schemes are fitness-proportional, 

tournament, linear rank, and exponential rank. Each scheme 

constructs a new PSO variation. The PSO variations are 

evaluated using standard mathematical optimization functions. 

The results show the effectiveness of the proposed selection 

schemes. The remainder of this study is organized as follows: 

Section II presents the PSO algorithm. Section III discusses the 

proposed selection schemes incorporated with PSO. Section IV 

presents the computation results, analysis, and discussion. 
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Section V concludes the study and provides possible directions 

for future study. 

II. PARTICLE SWARM OPTIMIZATION ALGORITHM PRINCIPLES 

 

The Particle Swarm Optimization PSO is a population-

based optimization method proposed by Kennedy and Eberhart 

[11]. The behavior of PSO can be conceivable by comparing it 

to school of fish searching for optimal food sources, where the 

direction in which a fish moves is influenced by its current 

movement, the best food source it ever experienced. 

 

PSO iteratively improves the accuracy of the solution to the 

optimization problem. Basically, optimization procedures are 

shown in flow chart as shown in Figure 1. These steps are 

described as follows: 

 Initialization: The n position vectors are randomly 

initialized {Xk (0), k = 1, 2,…, n }. The elements of Xk are 

uniformly distributed in a suitable range. Subsequently, 

the n velocity vectors {Vk (0), k = 1, 2,…, n }  are 

randomly initialized with the elements uniformly 

distributed between the minimum and maximum values. 

The fitness of the particle is determined by the objective 

function [12]. The local best of each particle is 

initialized to its initial position and the global best to the 

best fitness among the best locals. 

 

 
 

Fig. 1. Flowchart of the PSO Algorithm  

 

 Update Velocity: Equation (1)  updates the velocity of 

the particle [13]: 

 
Vi (t+1) =W.Vi (t) +C1.r1 (Pibest-Xi) + C2.r2 (Pgbest - Xi)         (1) 

 

where C1 and C2 represent the weights of the 

stochastic acceleration terms to the Pibest and Pgbest 

positions, r1 and r2 represent the random function 

between 0 and 1, X represents the current position 

of the particle, Pibest is the best position of individual 

i until iteration t, Pgbest is the global best position 

among the whole particles, and W is the inertia 

weight that controls the acceleration of the particle 

in its optimal direction. 

 

    Update Position: The particle position of each particle 

is updated depending on the updated velocity in the 

following equation [14]. The updated position is based 

on equation (2). 

 

Xi (t+1) = Xi (t) + Vi (t+1)                       (2) 

 

     Update the Local and Global Best: The fitness of each 

particle is evaluated based on the new updated position. 

If the updated position leads to a better objective 

function value, the local and the global best are updated.  

                                                                                                                                                          

   Stopping Criteria: The three previous steps are 

repeated until the number of iterations is reached. 

 

 

III. SELECTION SCHEMES 

 

The evolutionary algorithm (EA) is generally characterized 

by several features, such as a high level of population diversity. 

It is considered to be the best method of searching [1]. EA is 

discriminated in diversity population to circumvent premature 

convergence. A higher rate of selection from an accumulative 

search may lead to the loss of diversity, which in turn results in 

premature convergence. By contrast, if the rate of selection 

from the existing search is small, the search depends on 

randomness. Thus, the slow convergence problem may be 

achieved. 

 

   Any selection scheme of EA consists of two main phases 

[15]: the selection phase, in which the selection probability is 

assigned to each solution in the population depending on its 

fitness, and the sampling phase, in which the probability 

controls of the sample are selected in the solutions to the next 

population. 

 

Selection schemes are classified into static and dynamic 

schemes [16]. The selection probability of each solution in the 

static selection scheme is determined in advance and then 

remains constant during the search. Examples of this scheme 

include tournament selection, linear rank, and exponential rank. 

By contrast, the dynamic selection scheme updates the 

selection probability of each solution in the population at each 

evolution. Another classification categorizes the selection 

schemes into fitness-proportionate and rank-based schemes. 

The fitness-proportionate class calculates the selection 

probability based on the absolute fitness value of each 

individual, whereas the selection probability in the rank-based 
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class is determined based on fitness ranking rather than 

absolute fitness. A simple example of the fitness-proportionate 

scheme is the traditional proportional selection scheme. Some 

selection schemes have scaling problems that lead to premature 

convergence (e.g., proportionate selection). Other selection 

schemes suffer from the non-balance between fitness and the 

ability of reproduction (e.g., linear rank). 

    This study focuses on modifying the PSO algorithm by 

amending the method of selecting the global best solution. 

Figure 1 shows the procedure of selecting the global best. The 

minimum value of the global best remains stable until the end 

of the iterations. In this study, each proposed selection scheme 

is replaced with the original selection scheme. The following 

subsections present some of the random selection schemes that 

are suggested to the method used in PSO, which can be 

achieved by determining the working principle for each 

selection method when searching for sampling and selection 

probability for each variable in a new PSO. 

 

A.         Proportional Selection Scheme 

 

   The proportional (or roulette wheel) selection scheme 

proposed by Holland and John is the most traditional selection 

method [17]. In this method, the selection probability depends 

on the absolute fitness value of any solution compared with 

those of the other solutions in the population. The selection 

probability Pi for the solution i is proportional to its fitness 

value, which is calculated using equation (3). In Algorithm 

(1), r randomly picks a value uniformly from U (0, 1); 

sum_prob has accumulative selection probabilities, where the 

sum prob = 


j

i

iP
1

is the accumulative selection probability of 

solution   
jX . 

                            
 
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Algorithm 1. Pseudocode for the Proportional Selection Scheme  

                                                                                                     

1:    Set r ~ U (0, 1).    
2:    Set found = false. 
3:    Set sum_prob = 0. 
4:    Set K = 0. 
5:    While ( i ≤ swarm_size) and not (found) do 
6:             sum_prob = sum_prob + Pi 

7:             If (sum_prob ≥ r) then 
8:                K = i 

9:                found = True 

10:           End If 
11:           i = i + 1 

12:   End While 

 

B.         Tournament Selection Scheme 

 

    Tournament selection is among the most popular selection 

methods in genetic algorithms. It was initially proposed by 

Grefenstette and Baker [18]. Algorithm (2) shows the principle 

of tournament selection work, which starts from the random 

selection of t individuals from P(t) population and then proceeds 

to the selection of the best individual from tournament t. This 

procedure is repeated n times. The best choice is frequently 

between two individuals, and this scheme is called binary 

tournament, where the choice is between t individuals called 
tournament size [19]. 

 

Algorithm 2. Pseudocode for the Tournament Selection Scheme 

 

1:    Choose K (the tournament size) individuals from the  
         population at random.       
2:    Choose the best individual from pool / tournament 
         with probability P. 
3:    Choose the second best individual with probability 
         P*(1-P).   
4:    Choose the third best individual with probability 
        P*((1-P) ^2). 

5:     And so on... 
 

C.         Linear Ranking Selection Scheme 

 

Linear ranking is another selection scheme that was 

developed to overcome the disadvantages of the proportional 

selection scheme [20]. Rank selection schemes are developed 

to determine the selection probability of the solutions stored in 

PSO based on the solution fitness rank as shown in equation 

(4). The linear ranking selection scheme is based on the rank of 

individuals rather than on their fitness. Rank n is assigned to 

the best individual, whereas rank 1 is assigned to the worst 

individual. Thus, based on its rank, each individual i has the 

probability of being selected given by the expression [21]. 

 

                          
 

 1* 


nn

irank
Pi                                 (4) 

 

    Once all individuals of the current population are ranked, the 

procedure of the linear rank selection scheme can be 

implemented based on Algorithm (3). 

 

D.         Exponential Ranking Selection Scheme 

 

Exponential ranking selection sorts the probabilities of the 

ranked individuals by exponentially weighted as shown in 
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equation (5). The main of the exponent C is situated between 0 

and 1. If C     1, the difference in the selection probability 

between the best and the worst solutions is lost. If C        0, the 

difference in the selection probability becomes increasingly 

large and follows an exponential curve along the ranked 

solution. 

 

Algorithm 3. Pseudocode for Linear Ranking Selection Scheme 

 

1:    Set S0 = 0 

2:    For i =1 to swarm_size do 
3:         Si = Si-1 + Pi 
4:    End For 
5:    For i =1 to swarm_size do 
6:          Generate a random number r  [0,swarm_size] 
7:           For each 1 ≤  j  ≤ swarm_size do 
8:                 If ( Pj  ≤ r ) do 
9:                     Select the jth individual 
10:               End If 
11:         End For.  
12:  End For.  
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swarmsize

j

Rank

Rank

i
j

i

C

C
P
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                          (5) 

 

Algorithm (4) for the exponential ranking, it is similar to that 

for the linear ranking. The only difference is in the calculation 

of the selection probabilities as stated in algorithm (5). 

 

IV.  COMPUTATIONAL RESULTS, ANALYSIS AND DISCUSSION 

 

This section experimentally evaluates the new selection 

schemes. The five variations of the PSO algorithm proposed in 

this study are distinguished. Each variation uses a particular 

selection scheme that is incorporated with the PSO algorithm: 

 

1) Global best Particle Swarm Optimization (GPSO): 

It uses the PSO algorithm with the global best 

selection scheme. 

2) Proportional Particle Swarm Optimization 

(PPSO): It uses the PSO algorithm with the 

proportional selection scheme. 

3) Tournament Particle Swarm Optimization (TPSO): 

It uses the PSO algorithm with the tournament 

selection scheme. 

4) Linear rank Particle Swarm Optimization (LPSO): 

It uses the PSO algorithm with the linear rank 

selection scheme. 

5) Exponential rank Particle Swarm Optimization 

(EPSO): It uses the PSO algorithm with the 

exponential rank selection scheme. 

 

All the experiments are conducted using a computer with 

processor Intel(R) Core (TM) 2 Quad CPU Q9400@2.66 GHz 

with 4 GB of RAM and 32-bit for Microsoft Windows 7 

Professional. The source code is implemented using MATLAB 

(R2010a). This study applies 14 benchmarks minimization 

problems to compare the different selection schemes using a   

Algorithm 4. Pseudocode for Exponential Ranking selection scheme 

 

1:    Set S0 = 0 
2:    For i =1 to swarm_size do 
3:          Si = Si-1 + Pi 
4:    End For 
5:    For i =1 to swarm_size do 
6:          Generate a random number r C 
7:           For each 1 ≤ j ≤ swarm_size do 
8:                 If (Pj ≤ r) do 
9:                 Select the jth individual 
11:               End If 
12:         End For.  
13:  End For.  

 

large test set that involves function optimization [22]. The 

results of the benchmark minimization functions are used to 

compare the default selection schemes of PSO with the 

proposed selection schemes in this research. 

 

 The common parameters among all the algorithms used in 

the experiments are set depending on the experiential 

instruction. The flow of the different parameter settings used to 

evaluate the PSO with different selection schemes is 

investigated. An intensive parameter analysis is conducted with 

various values of D, population size, C1, C2 , and W for each 

PSO variation as follows: dimension size D = (10, 20, and 30) 

[23], population size = (30, 50, and 80) [24], acceleration 

coefficient C1 and C2 = (1.5, 2, and 2.5) [25], and weight W = 

(0.5, 0.7, and 0.9) [26]. Each run is iterated 100,000 times. 

 

The best parameter setting for each variation is recorded in 

Table I. A series of experiments is then conducted using five 

convergence scenarios, each of which varies in terms of 

parameter settings, as shown in Table I. Each convergence 

scenario investigates the capability of the five parameters, and 

each of these parameters includes a set of values. For example 

the first scenario contains the GPSO with its best value of each 

parameter, as shown D=30, C1=1.5, C2=2, W=0.7 and          

pop. size= 50, These values determined as a best value for the 

experiments, and so on for all scenarios.    

 

    A big size of dimensions requires more function 

evaluations. Meanwhile, increasing the computing efforts for 

convergence increases the reliability of the algorithm. The 

main point of this study is to maintain a balance between 
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reliability and cost. Thus, the best value for the dimension size 

should be between 10 and 30 and should not be larger than 30 

when the problem is complicated. The results obtained in this 

study are consistent with those of other researchers               

[4, 10, 27]. 

 

    The acceleration coefficients C1 and C2 often have the same 

value. Based on the different empirical studies, the best value 

for the acceleration coefficients is C1 = C2 = C/2, where C is 

the total of acceleration coefficients. If C is small, then the 

algorithm explores slowly. [28] Kennedy suggests the same 

previous equation to determine C1 and C2: (C1 + C2 ≤ 4.0). 

    The inertia weight causes a significant increase in the 

convergence speed and a better balance between the 

exploitation and exploration of the solution space, while the 

complexity of the algorithm increases only slightly. Therefore, 

the recommended inertia weight is between 0.5 and 0.9     

[26]. 

 
   Selecting a population size (number of particles) of 50 is 

recommended for higher dimensional problems, and a 

population size of [30, 50] is appropriate for lower 

dimensional problems. The values of population size are 

compatible with previous studies [24, 29, 30]. 

 

TABLE I.  PSO PARAMETERS SCENARIO 

Scenario 

No. 

Selection  

Schemes 

Parameters 

D C1 C2 W Pop. Size  
Sen1 GPSO 30 1.5 2 0.7 50 

Sen 2 PPSO 30 2 2 0.7 50 

Sen 3 TPSO 30 2 1.5 0.7 30 

Sen 4 LPSO 30 1.5 1.5 0.7 30 

Sen 5 EPSO 30 1.5 2 0.7 50 

 

 

      A summary of the 14 global minimization benchmark 

functions used to evaluate PSO variations is presented in this 

study. Most of these functions were previously used in [4, 9, 

31, 32]. These benchmark functions provide a trade-off 

between unimodal and multimodal functions. 

 

   Figure 2 shows the best solutions found by the PSO 

variations using the 14 benchmark functions. As mentioned 

previously the objective form using benchmark functions is to 

find the minimum solution and this depend on each benchmark 

[33], for example in the most of a benchmark the optimal value 

that close to Zero. On another hand, the optimal value for some 

benchmark is close to (- 450) like shifted benchmark functions. 

This is exactly shown in figure 2, all selection schemes try to 

be close to the optimal solution but TPSO got the first rank on 

the contrary EPSO got the worst solution, PPSO, GPSO and 

LPSO are respectively among them. 

 

    Tables II and III summarize the results of the PSO variations 

using the 14 benchmark functions in each convergence 

scenario, as shown in Table I. The results in Tables II and III 

are arranged from sen1 to sen5 to save the best value for each 

parameter, which means in sen5 each of the selection schemes 

has the best values of parameters. Each PSO variation runs 30 

replications, and the numbers in the table refer to the mean and 

standard deviations (within the parentheses below the mean 

value). The best solutions are highlighted in bold (i.e., the 

lowest is the best). 

 

    The results show that TPSO achieves the best results for all 

the benchmark functions. GPSO and PPSO achieve the eight 

best results for the Sphere, Schwefel problem 2.22, Step, 

Rosenbrock, Rotated hyper-ellipsoid, Rastrigin, Ackley, and 

Griewank benchmark functions. LPSO achieves the best results 

for most of the benchmark functions. By contrast, EPSO 

achieves poor results when compared with the other selection 

schemes, especially for the Rotated hyper-ellipsoid, Rastrigin, 

Shifted Sphere, and Shifted Rosenbrock benchmark     

functions. 

 

V. CONCLUSION AND FUTURE WORK 

 

    This study proposed new variations of PSO based on 

different selection schemes. Each variation is a PSO 

incorporated with a selection scheme. The proposed PSO  

 

 
 

Fig. 2.   Best solutions found by the PSO variations using the 14 benchmark 

functions 

 

 

variations - GPSO, PPSO, TPSO, LPSO, and EPSO –   

employed the natural selection principle of the “survival of the 

fittest” to generate the new PSO. These variations focused on 

the better solutions to the solution space. The experiments were 

conducted with global benchmark functions that are widely 

used in the literature.  

 

  The experimental results show that incorporating the 

proposed selection scheme in the solution space by balancing 

exploration and exploitation prevents premature convergence 

and quick stagnation without efficient results. 

 

    This study also produced new four selection schemes: PPSO, 

TPSO, LPSO, and EPSO. The experimental results show that 
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these schemes perform better than GPSO. TPSO (the first 

position) achieves the best results, followed by PPSO and 

GPSO, whose results are close to each other. LPSO and EPSO 

are in the fourth and last positions, respectively. 

 

        This study is an initial exploration of selection schemes in 

the PSO algorithm. Future work should analyze these selection 

schemes in terms of takeover time [7]. The PSO performance 

in other benchmark and real-life problems should be 

investigated as well. 
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TABLE II. MEAN AND STANDARD DEVIATION OF THE BENCHMARK FUNCTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

benchmark 

function 

Selection 

schemes 

Sen1 Sen2 Sen3 Sen4 Sen5 

 

 

 

 

Sphere 

 

 

 

GPSO 

6.97E-06 

(9.99E-06) 

4.27E-06 

(2.21E-07) 

1.47E-06 

(1.92E-06) 

3.11E-06 

(8.77E-08) 
2.80E-07 

(9.85E-08) 

 

PPSO 

9.50E-06 
(4.17E-06) 

8.23E-06 
(2.45E-08) 

6.58E-06 
(4.25E-06) 

4.87E-09 

(1.983E-10) 

2.50E-06 
(4.17E-06) 

 

TPSO 

0.00E+00 

(0.00E+00) 

6.93E-16 

(2.21E-14) 
0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

 

LPSO 

3.38E+04 
(9.48E+03) 

4.25E-04 
(3.50E-01) 

4.80E-03 
(7.30E-03) 

9.87E-07 
(8.08E-07) 

5.57E-07 

(1.23E-08) 

 

EPSO 

3.25E-01 

(1.09E-01) 

3.24E-02 

(2.11E-01) 

1.56E-02 

(1.88E-01) 

2.43E-03 

(1.02E-03) 
1.47E-06 

(1.92E-06) 

 

 

 

 

 

Schwefel’s 

problem 2.22 

 

 

 

GPSO 

0.0037 

(0.0025) 

0.0036 

(0.0031) 

7.99E-04 

(6.65E-03) 

7.88E-06 

(2.43E-05) 
8.43E-07 

(1.12E-09) 
 

PPSO 

0.0012 

(0.0012) 

5.85E-06 

(0.0012) 

4.76E-04 

(3.77E-04) 

2.44E-07 

(8.75E-06) 
9.23E-09 

(4.65E-08) 

 

TPSO 

4.33E-25 
(0.00E+00) 

4.57E-293 
(0.00E+00) 

2.57E-293 
(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 
(0.00E+00) 

 

LPSO 

0.1111 

(0.0842) 

7.35E-02 

(6.84E-02) 

9.76E-03 

(5.90E-02) 

1.02E-05 

(8.83E-04) 
5.23E-06 

(3.87E-06) 

 

EPSO 

2.08 E+02 

(3.69 E+01 ) 

2.07E+02 

(3.81E+01) 

1.004E+02 

(4.259E+02) 
0.92E+01 

(3.87E+02) 

0.69E+02 

(0.54E+02) 

 

 

 

 

 

Step 

 

GPSO 

7.28E-05 

(6.50E-05) 

9.50E-06 

(1.20E-05) 

6.21E-06 

(3.57E-04) 

8.94E-06 

(2.55E-07) 
1.75E-08 

(2.54E-07) 

 

PPSO 

1.51E-06 

(2.06E-06) 

1.51E-06 

(2.06E-06) 

2.07E-06 

(2.72E-06) 

6.63E-07 

(1.94E-08) 
8.78E-10 

(6.59E-09) 

 

TPSO 
0.00E+00 

(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

 

LPSO 

8.20E-03 

(1.23E-02) 

8.20E-03 

(1.99E-02) 

5.69E-03 

(1.59E+00) 

1.22E-04 

(6.82E-02) 
4.98E-06 

(2.73E-06) 

 

EPSO 

3.38E+02 
(9.47E+02) 

3.19E+02 
(1.00 E+02) 

1.46E+01 
(6.00E+01) 

1.13E+01 
(2.63E+01) 

2.39E+00 

(2.31E+00) 

 

 

 

 
Rosenbrock 

 

GPSO 

0.03534 

(1.9019) 

1.22E-04 

(1.38E-04) 

2.55E-04 

(7.69E-05) 

6.64E-05 

(4.33E-05) 
1.65E-06 

(2.37E-07) 

 

PPSO 

1.31E-06 

(2.26E-06) 

8.31E-05 

(2.26E-05) 

6.58E-05 

(4.25E-06) 
2.35E-07 

(4.67E-06) 

3.08E-07 

(6.29E-06) 

 

TPSO 
0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

 

LPSO 

0.6697 

(2.2043) 

3.41E-01 

(1.59E+00) 

3.85E-03 

(5.21E-03) 

4.32E-04 

(8.94E-05) 
2.82E-07 

(7.65E-06) 

 

EPSO 

1.46E+03 
(6.70E+02) 

3.28E+02 
(6.00E+02) 

1.52E+02 
(2.11E+02) 

2.17 E+01 
(1.49E+02) 

1.06 E+01 

(2.00E+02) 

 

 

 

 
Rotated hyper-

ellipsoid 

 

 

 

GPSO 

5.55E-05 

(9.06E-05) 

9.20E-05 

(3.24E-05) 

5.55E-05 

(9.06E-05) 

5.69E-05 

(2.44E-05) 
5.59E-06 

(2.39E-06) 

 

PPSO 

7.61E-06 

(1.23E-05) 

7.61E-06 

(1.23E-05) 

3.651E-06 

(7.32E-07) 

6.84E-07 

(7.56E-06) 
5.69E-08 

(3.49E-09) 

 

TPSO 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

 

LPSO 

1.16E-03 
(0.0189) 

2.39E-03 
(1.09E+00) 

1.04E-05 
(3.40E-05) 

1.56E-04 
(5.21E-05) 

3.85E-07 

(5.21E-05) 

 

EPSO 

1.80E+05 

(6.56E+04) 

1.49E+02 

(3.29E+05) 

3.24E+02 

(2.11E+01) 

2.33E+01 

(2.83E-01) 
6.94 E+00 

(1.06E+01) 

 

 

 

 
Schwefel’s 

problem 2.26 

 

 

GPSO 

-448.576769 

(2.095817) 

-12564.817 

(2.247382) 

-12450.698 
(2.948752) 

-12557.657 
(2.134256) 

-12559.293 
(2.267349) 

 

PPSO 

-844.2568 

(12.9384) 

-2517.534 

(656.294850) 

-12558.592 

(9.533928) 

-12560.543 

(2.434646) 
-12563.685 

(1.950643) 

 

TPSO 

-930.816247 

(257.157573) 

-12567.43 

(3.14213) 

-12539.486 
(0.000017) 

-12539.493 
(1.52E-03) 

-12563.978 
(1.08E-03) 

 

LPSO 

-9754.924388 

(399.855744) 

-12561.42 

(0.863088) 

-12564.817 

(2.247382) 

-12553.343 

(2.854832) 

-12566.854 

(1.098576) 

 

EPSO 

-482.3852 

(773.5379) 

-9765.6465 
(400.078376) 

-9765.646 
(400.078) 

-9865.646 
(241.532) 

-11783.543 

(223.495) 

 

 

 

 

 

Rastrigin 

 

GPSO 

9.69E-03 

(1.72E-03) 

6.94E-03 

(9.90E-04) 

6.21E-05 

(3.57E-04) 

3.34E-06 

(6.34E-05) 
1.59E-06 

(3.94E-06) 

 

PPSO 

6.85E-06 

(1.30E-06) 

6.85E-07 

(1.30E-06) 

8.07E-07 

(7.72E-07) 

2.54E-07 

(1.88E-07) 
4.58E-08 

(4.59E-07) 

 

TPSO 
0.00E+00 

(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

 

LPSO 

6.69E-02 

(4.83 E-02) 

1.39E-02 
(1.39E-02) 

5.69E-03 
(1.59E-02) 

3.01E-03 
(8.22E-02) 

4.45E-04 

(2.15E-03) 

 

EPSO 

1.88E+04 

(2.65 E+04) 

1.94 E+04 
(4.19 E+04) 

8.46E+03 
(6.00E+04) 

2.094E+03 
(3.43E+03) 

7.69E+01 

(2.05E+01) 
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TABLE III. MEAN AND STANDARD DEVIATION OF THE BENCHMARK FUNCTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

benchmark 

function 

Selection 

schemes 

Sen1 Sen2 Sen3 Sen4 Sen5 

 

 

 

 

 

Ackley 

 

 

 

 

GPSO 

5.65E-02 

(4.26E-02) 

2.46E-02 

(5.34E-02) 

1.01E-02 

(6.54 E-03) 

 7.66E-03 

(2.38E-04) 
6.45E-04 

(9.32E-04) 

 

PPSO 

9.37E-03 
(2.70E-02) 

5.58E-04 
(7.85E-04) 

1.14E-04 
(2.75E-04) 

8.12E-04 
(3.55E-05) 

3.43E-06 

(8.56E-07) 

 

TPSO 

4.88E-03 

(0.00E+00) 
0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00 

 

LPSO 

7.2318 
(5.2197) 

4.5235 
(7.67E-01) 

3.4935 
(2.26E-02) 

0.6697 
(1.00E-02) 

0.2849 

(6.66E-3) 

 

EPSO 

19.6590 

(2.8761) 

18.2253 

( 0.792) 

18.2455 

(7.29E-01) 

17.4673 

(3.32E-03) 
13.9837 

(1.27E-03) 

 

 

 

 

 

Griewank 

 

 

 

GPSO 

6.35E-04 

(1.38E-05) 

2.38E-04 

(5.89E-04) 

1.65E-05 

(7.08E-05) 
3.23E-07 

(8.63E-06) 

4.54E-07 

(7.35E-06) 

 

PPSO 

2.38E-05 
(5.89E-05) 

5.80E-06 
(7.44E-04) 

5.80E-06 
(7.44E-04) 

6.85E-07 
(8.30E-06) 

7.26E-08 

(5.68E-08) 

 

TPSO 
0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

 

LPSO 

0.0563 
(0.0832) 

6.06E-02 
(6.09E-03) 

7.03E-04 
(1.86E-03) 

1.25E-05 
(7.43E-04) 

1.02E-06 

(2.45E-04) 

 

EPSO 

1.34E+02 

(1.76E+02) 

4.96E+01 

(6.65E+01) 

3.87E+01 

(2.97E+01) 

3.02E+01 

(2.97E+01) 

2.11E+00 

(1.02E+00) 

 

 

 

 

 

Camel-Back 

 

GPSO 

-0.9275 

(0.097) 

-8.98E-01 

(3.24E-01) 
-9.18E-01 

(4.84E-01) 

-9.01E-01 

(3.94E-01) 

-8.67E-01 

(3.26E-01) 

 

PPSO 

-0.7673 
(0.2075) 

-7.98E-01 
(5.012E-01) 

-9.44E-01 
(9.873E-01) 

-9.95E-01 

(9.86E-01) 

-9.21E-01 
(2.02E-01) 

 

TPSO 

-0.7356 

(0.00E+00) 

-5.34E-01 

(3.12E-01) 

-9.79E-01 

(7.02E-03) 

-9.79E-01 

(7.02E-03) 
-9.98E-01 

(9.87E-03) 

 

LPSO 

0.7389 
(2.2041) 

1.53E+00 
(3.63E+00) 

1.01E+00 
(1.03E+02) 

1.01E+00 
(1.03E+02) 

-8.98E-01 

(1.75E-02) 

 

EPSO 

7.22E+02 

(8.28E+02) 

9.34E+02 

(1.05E+03) 

5.86E+02 

(9.74E+01) 

5.86E+02 

(9.74E+01) 
3.87E+01 

(9.74E-01) 

 

 

 

 
Shifted Sphere 

 

GPSO 

1.74E+03 

(6.20E+02) 

5801.689232 

(1761.064344) 

287.280860 

(2085.974382) 

-440.856 

(2.642622) 
-448.624 

(1.364865) 
 

PPSO 

1.85E+03 

(6.10E+02) 

-445.9264 

(0.028288) 

-447.6589 

(0.757310) 

-442.789 

(1.45624) 
-449.086 

(2.456782) 

 

TPSO 

2.64E+03 

(1.03E+03) 
-449.999836 

(0.008747) 

-447.999877 

(0.000943) 

-448.543 

(1.43676) 

-449.958 

(0.076328) 

 

LPSO 

3.27E+04 

(8.94E+03) 

5801.689232 

(1761.064344) 

3565.63289 

(1076.69087) 

753.538 

(7.33E+04) 
742.756 

(2.39E+04) 

 

EPSO 

1.94E+05 

(4.90E+05) 

5.80 E+04 

(3.76 E+05) 

2.57 E+04 

(2.08 E+05) 

9.56 E+03 

 (6.58E+04) 

6.32 E+03 

(6.65E+03) 

 

 

 
Shifted 

Schwefel’s 

problem 1.2 
 

 

GPSO 

5.41E+03 
(1.26E+03) 

946598.695 
(309138.764) 

-439.933552 
(0.052206) 

-440.863 
(1.9564) 

-449.661 

(0.07654) 

 

PPSO 

5.04E+03 

(1.39E+03) 

-48.748413 

(366.028440) 

-449.668252 

(366.028440) 

-441.698 

(1.32E-01) 
-449.827 

(2.69E-02) 

 

TPSO 

7.98E+03 
(3.35E+03) 

-447.007381 
(2.969228) 

-449.75496 
(6.474446) 

-448.365 
(1.38E-02) 

-449.947 

(7.09E-02) 

 

LPSO 

1.87E+05 
(9.08E+04) 

-449.933552 
(0.052206) 

-216.64485 
(0.052206) 

-421.302 
(8.29E-02) 

-439.546 

(6.67E-02) 

 

EPSO 

5.71E+03 
(1.50E+03) 

6598.695551 
(9138.764095) 

2643.859146 
(7586.125628) 

4085.025 
(3878.464) 

546.131 

(558.315) 

 

 

 
Shifted 

Rosenbrock   

 

GPSO 

2.12E+11 

(2.24E+10) 

515.19 
(105.6652) 

509.54320 
(363.352) 

501.3213 

(206.653) 

502.1478 
(302.579) 

 

PPSO 

2.14E+11 

(2.60E+10) 

497.01 

(106.87) 

498.744 

(116614) 

469.005 

(2.86E+02) 
465.744 

(2.00E+02) 

 

TPSO 

2.49E+11 

(6.54E+10) 

486.825 
(120.596) 

495.595 
(123.986) 

421.203 
(332.845) 

388.564 

(203.432) 

 

LPSO 

2.17E+12 

(6.42E+11) 

589.40 

(309.94) 

597.585 

(109.454) 

578.230 

(283.865) 
554.587 

(229.545) 

 

EPSO 

2.14E+11 

(2.60E+10) 

1506.80 
(1.87 E+7) 

1122.625 
(1.56 E+6) 

983.748 
(1.72E+04) 

876.432 

(1.65E+04) 

 

 

 

 

Shifted 

Rastrigin 

 

GPSO 

143.079 

(26.8865) 
-329.8838 

(0.304559) 

-329.235 

(0.848076) 

-302.738 

(0.304559) 

-319.454 

(0.54786) 

 

PPSO 

143.0297 
(21.7146) 

-329.951 
(0.184239) 

-429.768 

(0.184239) 

-320.765 
(1.54677) 

-323.564 
(0.342) 

 

TPSO 

143.6271 
(17.9028) 

-220.091 
(13.0087) 

-328.534 
(2.87987) 

-329.654 
(4.51E-02) 

-429.654 

(3.69E-02) 

 

LPSO 

8.79E+02 
(172.0375) 

-329.951 
(0.184239) 

-389.098 

(1.760988) 

-289.765 
(0.3472) 

-320.969 
(0.7649) 

 

EPSO 

923.7594 
(47.333) 

1026.852 
(1876.38) 

1751.450 
(1555.89) 

-201.543 
(39.6543) 

-281.203 

(4.875) 
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